Solve for r
\left\{\begin{matrix}r=\frac{x^{2}\left(4x+7\right)^{3}}{v}\text{, }&v\neq 0\\r\in \mathrm{R}\text{, }&\left(x=-\frac{7}{4}\text{ and }v=0\right)\text{ or }x=0\end{matrix}\right.
Solve for v
\left\{\begin{matrix}v=\frac{x^{2}\left(4x+7\right)^{3}}{r}\text{, }&r\neq 0\\v\in \mathrm{R}\text{, }&\left(x=-\frac{7}{4}\text{ and }r=0\right)\text{ or }x=0\end{matrix}\right.
Share
Copied to clipboard
vrx=64\left(x^{2}\right)^{3}+336\left(x^{2}\right)^{2}x+588x^{2}x^{2}+343x^{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(4x^{2}+7x\right)^{3}.
vrx=64x^{6}+336\left(x^{2}\right)^{2}x+588x^{2}x^{2}+343x^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
vrx=64x^{6}+336x^{4}x+588x^{2}x^{2}+343x^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
vrx=64x^{6}+336x^{5}+588x^{2}x^{2}+343x^{3}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
vrx=64x^{6}+336x^{5}+588x^{4}+343x^{3}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
vxr=64x^{6}+336x^{5}+588x^{4}+343x^{3}
The equation is in standard form.
\frac{vxr}{vx}=\frac{x^{3}\left(4x+7\right)^{3}}{vx}
Divide both sides by vx.
r=\frac{x^{3}\left(4x+7\right)^{3}}{vx}
Dividing by vx undoes the multiplication by vx.
r=\frac{x^{2}\left(4x+7\right)^{3}}{v}
Divide \left(7+4x\right)^{3}x^{3} by vx.
vrx=64\left(x^{2}\right)^{3}+336\left(x^{2}\right)^{2}x+588x^{2}x^{2}+343x^{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(4x^{2}+7x\right)^{3}.
vrx=64x^{6}+336\left(x^{2}\right)^{2}x+588x^{2}x^{2}+343x^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
vrx=64x^{6}+336x^{4}x+588x^{2}x^{2}+343x^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
vrx=64x^{6}+336x^{5}+588x^{2}x^{2}+343x^{3}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
vrx=64x^{6}+336x^{5}+588x^{4}+343x^{3}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
rxv=64x^{6}+336x^{5}+588x^{4}+343x^{3}
The equation is in standard form.
\frac{rxv}{rx}=\frac{x^{3}\left(4x+7\right)^{3}}{rx}
Divide both sides by rx.
v=\frac{x^{3}\left(4x+7\right)^{3}}{rx}
Dividing by rx undoes the multiplication by rx.
v=\frac{x^{2}\left(4x+7\right)^{3}}{r}
Divide \left(7+4x\right)^{3}x^{3} by rx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}