Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for v (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

v^{2}=v_{0}^{2}+2ax-2ax_{0}
Use the distributive property to multiply 2a by x-x_{0}.
v_{0}^{2}+2ax-2ax_{0}=v^{2}
Swap sides so that all variable terms are on the left hand side.
2ax-2ax_{0}=v^{2}-v_{0}^{2}
Subtract v_{0}^{2} from both sides.
\left(2x-2x_{0}\right)a=v^{2}-v_{0}^{2}
Combine all terms containing a.
\frac{\left(2x-2x_{0}\right)a}{2x-2x_{0}}=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2x-2x_{0}}
Divide both sides by 2x-2x_{0}.
a=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2x-2x_{0}}
Dividing by 2x-2x_{0} undoes the multiplication by 2x-2x_{0}.
a=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2\left(x-x_{0}\right)}
Divide \left(v-v_{0}\right)\left(v+v_{0}\right) by 2x-2x_{0}.
v^{2}=v_{0}^{2}+2ax-2ax_{0}
Use the distributive property to multiply 2a by x-x_{0}.
v_{0}^{2}+2ax-2ax_{0}=v^{2}
Swap sides so that all variable terms are on the left hand side.
2ax-2ax_{0}=v^{2}-v_{0}^{2}
Subtract v_{0}^{2} from both sides.
\left(2x-2x_{0}\right)a=v^{2}-v_{0}^{2}
Combine all terms containing a.
\frac{\left(2x-2x_{0}\right)a}{2x-2x_{0}}=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2x-2x_{0}}
Divide both sides by 2x-2x_{0}.
a=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2x-2x_{0}}
Dividing by 2x-2x_{0} undoes the multiplication by 2x-2x_{0}.
a=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2\left(x-x_{0}\right)}
Divide \left(v-v_{0}\right)\left(v+v_{0}\right) by 2x-2x_{0}.