Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{v_{0}^{2}-v^{2}}{2\left(x-x_{0}\right)}\text{, }&x\neq x_{0}\\a\in \mathrm{C}\text{, }&\left(v=-v_{0}\text{ or }v=v_{0}\right)\text{ and }x=x_{0}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{v_{0}^{2}-v^{2}}{2\left(x-x_{0}\right)}\text{, }&x\neq x_{0}\\a\in \mathrm{R}\text{, }&x=x_{0}\text{ and }|v|=|v_{0}|\end{matrix}\right.
Solve for v (complex solution)
v=-\sqrt{2ax-2ax_{0}+v_{0}^{2}}
v=\sqrt{2ax-2ax_{0}+v_{0}^{2}}
Graph
Share
Copied to clipboard
v^{2}=v_{0}^{2}+2ax-2ax_{0}
Use the distributive property to multiply 2a by x-x_{0}.
v_{0}^{2}+2ax-2ax_{0}=v^{2}
Swap sides so that all variable terms are on the left hand side.
2ax-2ax_{0}=v^{2}-v_{0}^{2}
Subtract v_{0}^{2} from both sides.
\left(2x-2x_{0}\right)a=v^{2}-v_{0}^{2}
Combine all terms containing a.
\frac{\left(2x-2x_{0}\right)a}{2x-2x_{0}}=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2x-2x_{0}}
Divide both sides by 2x-2x_{0}.
a=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2x-2x_{0}}
Dividing by 2x-2x_{0} undoes the multiplication by 2x-2x_{0}.
a=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2\left(x-x_{0}\right)}
Divide \left(v-v_{0}\right)\left(v+v_{0}\right) by 2x-2x_{0}.
v^{2}=v_{0}^{2}+2ax-2ax_{0}
Use the distributive property to multiply 2a by x-x_{0}.
v_{0}^{2}+2ax-2ax_{0}=v^{2}
Swap sides so that all variable terms are on the left hand side.
2ax-2ax_{0}=v^{2}-v_{0}^{2}
Subtract v_{0}^{2} from both sides.
\left(2x-2x_{0}\right)a=v^{2}-v_{0}^{2}
Combine all terms containing a.
\frac{\left(2x-2x_{0}\right)a}{2x-2x_{0}}=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2x-2x_{0}}
Divide both sides by 2x-2x_{0}.
a=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2x-2x_{0}}
Dividing by 2x-2x_{0} undoes the multiplication by 2x-2x_{0}.
a=\frac{\left(v-v_{0}\right)\left(v+v_{0}\right)}{2\left(x-x_{0}\right)}
Divide \left(v-v_{0}\right)\left(v+v_{0}\right) by 2x-2x_{0}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}