Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

v^{2}-4v=-13
Subtract 4v from both sides.
v^{2}-4v+13=0
Add 13 to both sides.
v=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 13}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-4\right)±\sqrt{16-4\times 13}}{2}
Square -4.
v=\frac{-\left(-4\right)±\sqrt{16-52}}{2}
Multiply -4 times 13.
v=\frac{-\left(-4\right)±\sqrt{-36}}{2}
Add 16 to -52.
v=\frac{-\left(-4\right)±6i}{2}
Take the square root of -36.
v=\frac{4±6i}{2}
The opposite of -4 is 4.
v=\frac{4+6i}{2}
Now solve the equation v=\frac{4±6i}{2} when ± is plus. Add 4 to 6i.
v=2+3i
Divide 4+6i by 2.
v=\frac{4-6i}{2}
Now solve the equation v=\frac{4±6i}{2} when ± is minus. Subtract 6i from 4.
v=2-3i
Divide 4-6i by 2.
v=2+3i v=2-3i
The equation is now solved.
v^{2}-4v=-13
Subtract 4v from both sides.
v^{2}-4v+\left(-2\right)^{2}=-13+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-4v+4=-13+4
Square -2.
v^{2}-4v+4=-9
Add -13 to 4.
\left(v-2\right)^{2}=-9
Factor v^{2}-4v+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-2\right)^{2}}=\sqrt{-9}
Take the square root of both sides of the equation.
v-2=3i v-2=-3i
Simplify.
v=2+3i v=2-3i
Add 2 to both sides of the equation.