Solve for v
v=-19
v=0
Share
Copied to clipboard
v^{2}+19v=0
Add 19v to both sides.
v\left(v+19\right)=0
Factor out v.
v=0 v=-19
To find equation solutions, solve v=0 and v+19=0.
v^{2}+19v=0
Add 19v to both sides.
v=\frac{-19±\sqrt{19^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 19 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-19±19}{2}
Take the square root of 19^{2}.
v=\frac{0}{2}
Now solve the equation v=\frac{-19±19}{2} when ± is plus. Add -19 to 19.
v=0
Divide 0 by 2.
v=-\frac{38}{2}
Now solve the equation v=\frac{-19±19}{2} when ± is minus. Subtract 19 from -19.
v=-19
Divide -38 by 2.
v=0 v=-19
The equation is now solved.
v^{2}+19v=0
Add 19v to both sides.
v^{2}+19v+\left(\frac{19}{2}\right)^{2}=\left(\frac{19}{2}\right)^{2}
Divide 19, the coefficient of the x term, by 2 to get \frac{19}{2}. Then add the square of \frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}+19v+\frac{361}{4}=\frac{361}{4}
Square \frac{19}{2} by squaring both the numerator and the denominator of the fraction.
\left(v+\frac{19}{2}\right)^{2}=\frac{361}{4}
Factor v^{2}+19v+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v+\frac{19}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Take the square root of both sides of the equation.
v+\frac{19}{2}=\frac{19}{2} v+\frac{19}{2}=-\frac{19}{2}
Simplify.
v=0 v=-19
Subtract \frac{19}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}