Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

v^{2}+5v+2250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-5±\sqrt{5^{2}-4\times 2250}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and 2250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-5±\sqrt{25-4\times 2250}}{2}
Square 5.
v=\frac{-5±\sqrt{25-9000}}{2}
Multiply -4 times 2250.
v=\frac{-5±\sqrt{-8975}}{2}
Add 25 to -9000.
v=\frac{-5±5\sqrt{359}i}{2}
Take the square root of -8975.
v=\frac{-5+5\sqrt{359}i}{2}
Now solve the equation v=\frac{-5±5\sqrt{359}i}{2} when ± is plus. Add -5 to 5i\sqrt{359}.
v=\frac{-5\sqrt{359}i-5}{2}
Now solve the equation v=\frac{-5±5\sqrt{359}i}{2} when ± is minus. Subtract 5i\sqrt{359} from -5.
v=\frac{-5+5\sqrt{359}i}{2} v=\frac{-5\sqrt{359}i-5}{2}
The equation is now solved.
v^{2}+5v+2250=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
v^{2}+5v+2250-2250=-2250
Subtract 2250 from both sides of the equation.
v^{2}+5v=-2250
Subtracting 2250 from itself leaves 0.
v^{2}+5v+\left(\frac{5}{2}\right)^{2}=-2250+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}+5v+\frac{25}{4}=-2250+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
v^{2}+5v+\frac{25}{4}=-\frac{8975}{4}
Add -2250 to \frac{25}{4}.
\left(v+\frac{5}{2}\right)^{2}=-\frac{8975}{4}
Factor v^{2}+5v+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{8975}{4}}
Take the square root of both sides of the equation.
v+\frac{5}{2}=\frac{5\sqrt{359}i}{2} v+\frac{5}{2}=-\frac{5\sqrt{359}i}{2}
Simplify.
v=\frac{-5+5\sqrt{359}i}{2} v=\frac{-5\sqrt{359}i-5}{2}
Subtract \frac{5}{2} from both sides of the equation.