u + \frac { x d y } { d x } = u + \frac { 1 } { u }
Solve for d
d\neq 0
u=\frac{1}{y}\text{ and }x\neq 0\text{ and }y\neq 0
Solve for u
u=\frac{1}{y}
y\neq 0\text{ and }d\neq 0\text{ and }x\neq 0
Graph
Share
Copied to clipboard
duxu+uxdy=duxu+dx
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dux, the least common multiple of dx,u.
du^{2}x+uxdy=duxu+dx
Multiply u and u to get u^{2}.
du^{2}x+uxdy=du^{2}x+dx
Multiply u and u to get u^{2}.
du^{2}x+uxdy-du^{2}x=dx
Subtract du^{2}x from both sides.
uxdy=dx
Combine du^{2}x and -du^{2}x to get 0.
uxdy-dx=0
Subtract dx from both sides.
\left(uxy-x\right)d=0
Combine all terms containing d.
d=0
Divide 0 by uxy-x.
d\in \emptyset
Variable d cannot be equal to 0.
duxu+uxdy=duxu+dx
Variable u cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dux, the least common multiple of dx,u.
du^{2}x+uxdy=duxu+dx
Multiply u and u to get u^{2}.
du^{2}x+uxdy=du^{2}x+dx
Multiply u and u to get u^{2}.
du^{2}x+uxdy-du^{2}x=dx
Subtract du^{2}x from both sides.
uxdy=dx
Combine du^{2}x and -du^{2}x to get 0.
dxyu=dx
The equation is in standard form.
\frac{dxyu}{dxy}=\frac{dx}{dxy}
Divide both sides by xdy.
u=\frac{dx}{dxy}
Dividing by xdy undoes the multiplication by xdy.
u=\frac{1}{y}
Divide dx by xdy.
u=\frac{1}{y}\text{, }u\neq 0
Variable u cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}