t _ { g } \alpha = \frac { 0,23 } { 610 }
Solve for t_g
t_{g}=\frac{23}{61000\alpha }
\alpha \neq 0
Solve for α
\alpha =\frac{23}{61000t_{g}}
t_{g}\neq 0
Share
Copied to clipboard
t_{g}\alpha =\frac{23}{61000}
Expand \frac{0,23}{610} by multiplying both numerator and the denominator by 100.
\alpha t_{g}=\frac{23}{61000}
The equation is in standard form.
\frac{\alpha t_{g}}{\alpha }=\frac{\frac{23}{61000}}{\alpha }
Divide both sides by \alpha .
t_{g}=\frac{\frac{23}{61000}}{\alpha }
Dividing by \alpha undoes the multiplication by \alpha .
t_{g}=\frac{23}{61000\alpha }
Divide \frac{23}{61000} by \alpha .
t_{g}\alpha =\frac{23}{61000}
Expand \frac{0,23}{610} by multiplying both numerator and the denominator by 100.
\frac{t_{g}\alpha }{t_{g}}=\frac{\frac{23}{61000}}{t_{g}}
Divide both sides by t_{g}.
\alpha =\frac{\frac{23}{61000}}{t_{g}}
Dividing by t_{g} undoes the multiplication by t_{g}.
\alpha =\frac{23}{61000t_{g}}
Divide \frac{23}{61000} by t_{g}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}