Solve for t
t=-17
Share
Copied to clipboard
t-2t-5-\left(1-2t\right)=3+4t-2\left(t-4\right)
To find the opposite of 2t+5, find the opposite of each term.
-t-5-\left(1-2t\right)=3+4t-2\left(t-4\right)
Combine t and -2t to get -t.
-t-5-1-\left(-2t\right)=3+4t-2\left(t-4\right)
To find the opposite of 1-2t, find the opposite of each term.
-t-5-1+2t=3+4t-2\left(t-4\right)
The opposite of -2t is 2t.
-t-6+2t=3+4t-2\left(t-4\right)
Subtract 1 from -5 to get -6.
t-6=3+4t-2\left(t-4\right)
Combine -t and 2t to get t.
t-6=3+4t-2t+8
Use the distributive property to multiply -2 by t-4.
t-6=3+2t+8
Combine 4t and -2t to get 2t.
t-6=11+2t
Add 3 and 8 to get 11.
t-6-2t=11
Subtract 2t from both sides.
-t-6=11
Combine t and -2t to get -t.
-t=11+6
Add 6 to both sides.
-t=17
Add 11 and 6 to get 17.
t=-17
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}