Solve for x
x=-\frac{2\left(-t^{2}+3t-1\right)}{\left(3-t\right)t^{2}}
t\neq 3\text{ and }t\neq 0
Graph
Share
Copied to clipboard
\left(-\frac{1}{6}t^{3}+\frac{1}{2}t^{2}\right)x-\frac{1}{3}=\frac{1}{3}t^{2}-t
Use the distributive property to multiply t by -\frac{1}{6}t^{2}+\frac{1}{2}t.
-\frac{1}{6}t^{3}x+\frac{1}{2}t^{2}x-\frac{1}{3}=\frac{1}{3}t^{2}-t
Use the distributive property to multiply -\frac{1}{6}t^{3}+\frac{1}{2}t^{2} by x.
-\frac{1}{6}t^{3}x+\frac{1}{2}t^{2}x=\frac{1}{3}t^{2}-t+\frac{1}{3}
Add \frac{1}{3} to both sides.
\left(-\frac{1}{6}t^{3}+\frac{1}{2}t^{2}\right)x=\frac{1}{3}t^{2}-t+\frac{1}{3}
Combine all terms containing x.
\left(-\frac{t^{3}}{6}+\frac{t^{2}}{2}\right)x=\frac{t^{2}}{3}-t+\frac{1}{3}
The equation is in standard form.
\frac{\left(-\frac{t^{3}}{6}+\frac{t^{2}}{2}\right)x}{-\frac{t^{3}}{6}+\frac{t^{2}}{2}}=\frac{\frac{t^{2}}{3}-t+\frac{1}{3}}{-\frac{t^{3}}{6}+\frac{t^{2}}{2}}
Divide both sides by -\frac{1}{6}t^{3}+\frac{1}{2}t^{2}.
x=\frac{\frac{t^{2}}{3}-t+\frac{1}{3}}{-\frac{t^{3}}{6}+\frac{t^{2}}{2}}
Dividing by -\frac{1}{6}t^{3}+\frac{1}{2}t^{2} undoes the multiplication by -\frac{1}{6}t^{3}+\frac{1}{2}t^{2}.
x=\frac{2\left(t^{2}-3t+1\right)}{\left(3-t\right)t^{2}}
Divide \frac{t^{2}}{3}-t+\frac{1}{3} by -\frac{1}{6}t^{3}+\frac{1}{2}t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}