Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-\frac{1}{6}t^{3}+\frac{1}{2}t^{2}\right)x-\frac{1}{3}=\frac{1}{3}t^{2}-t
Use the distributive property to multiply t by -\frac{1}{6}t^{2}+\frac{1}{2}t.
-\frac{1}{6}t^{3}x+\frac{1}{2}t^{2}x-\frac{1}{3}=\frac{1}{3}t^{2}-t
Use the distributive property to multiply -\frac{1}{6}t^{3}+\frac{1}{2}t^{2} by x.
-\frac{1}{6}t^{3}x+\frac{1}{2}t^{2}x=\frac{1}{3}t^{2}-t+\frac{1}{3}
Add \frac{1}{3} to both sides.
\left(-\frac{1}{6}t^{3}+\frac{1}{2}t^{2}\right)x=\frac{1}{3}t^{2}-t+\frac{1}{3}
Combine all terms containing x.
\left(-\frac{t^{3}}{6}+\frac{t^{2}}{2}\right)x=\frac{t^{2}}{3}-t+\frac{1}{3}
The equation is in standard form.
\frac{\left(-\frac{t^{3}}{6}+\frac{t^{2}}{2}\right)x}{-\frac{t^{3}}{6}+\frac{t^{2}}{2}}=\frac{\frac{t^{2}}{3}-t+\frac{1}{3}}{-\frac{t^{3}}{6}+\frac{t^{2}}{2}}
Divide both sides by -\frac{1}{6}t^{3}+\frac{1}{2}t^{2}.
x=\frac{\frac{t^{2}}{3}-t+\frac{1}{3}}{-\frac{t^{3}}{6}+\frac{t^{2}}{2}}
Dividing by -\frac{1}{6}t^{3}+\frac{1}{2}t^{2} undoes the multiplication by -\frac{1}{6}t^{3}+\frac{1}{2}t^{2}.
x=\frac{2\left(t^{2}-3t+1\right)}{\left(3-t\right)t^{2}}
Divide \frac{t^{2}}{3}-t+\frac{1}{3} by -\frac{1}{6}t^{3}+\frac{1}{2}t^{2}.