Solve for X (complex solution)
X=-\frac{27}{8t\left(-\frac{2}{3}\right)^{k}}
t\neq 0
Solve for X
X=-\frac{27}{8t\left(-\frac{2}{3}\right)^{k}}
t\neq 0\text{ and }\left(-\frac{2}{3}\right)^{k+1}\neq 0\text{ and }Denominator(k)\text{bmod}2=1
Solve for k (complex solution)
k=\frac{\ln(-\frac{243}{32Xt})-\ln(\frac{9}{4})+2\pi i}{\ln(\frac{2}{3})+\pi i}+\frac{2\pi n_{1}i}{\ln(\frac{2}{3})+\pi i}
n_{1}\in \mathrm{Z}
Xt\neq 0
Solve for k
k=-\frac{-\ln(-\frac{243}{32Xt})+\ln(\frac{9}{4})}{\ln(\frac{2}{3})}
Xt\neq 0\text{ and }\left(t>0\text{ or }X>0\right)\text{ and }\left(X<0\text{ or }t<0\right)\text{ and }Numerator(\frac{\ln(-\frac{243}{32Xt})}{\ln(\frac{2}{3})})\text{bmod}2=0\text{ and }Denominator(\frac{\ln(-\frac{243}{32Xt})}{\ln(\frac{2}{3})})\text{bmod}2=1\text{ and }Denominator(\frac{-\ln(-\frac{243}{32Xt})+\ln(\frac{9}{4})}{\ln(\frac{2}{3})})\text{bmod}2=1
Share
Copied to clipboard
t\left(-\frac{2}{3}\right)^{k-2}X\times \left(\frac{-2}{3}\right)^{3}=\left(\frac{-2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{2}{3}\right)^{3}=\left(\frac{-2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\left(\frac{-2}{3}\right)^{-2}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\left(-\frac{2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\frac{9}{4}
Calculate -\frac{2}{3} to the power of -2 and get \frac{9}{4}.
\left(-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}\right)X=\frac{9}{4}
The equation is in standard form.
\frac{\left(-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}\right)X}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}=\frac{\frac{9}{4}}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}
Divide both sides by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
X=\frac{\frac{9}{4}}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}
Dividing by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2} undoes the multiplication by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
X=-\frac{27}{8t\left(-\frac{2}{3}\right)^{k}}
Divide \frac{9}{4} by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
t\left(-\frac{2}{3}\right)^{k-2}X\times \left(\frac{-2}{3}\right)^{3}=\left(\frac{-2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{2}{3}\right)^{3}=\left(\frac{-2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\left(\frac{-2}{3}\right)^{-2}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\left(-\frac{2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\frac{9}{4}
Calculate -\frac{2}{3} to the power of -2 and get \frac{9}{4}.
\left(-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}\right)X=\frac{9}{4}
The equation is in standard form.
\frac{\left(-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}\right)X}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}=\frac{\frac{9}{4}}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}
Divide both sides by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
X=\frac{\frac{9}{4}}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}
Dividing by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2} undoes the multiplication by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
X=-\frac{27}{8t\left(-\frac{2}{3}\right)^{k}}
Divide \frac{9}{4} by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}