Skip to main content
Solve for X (complex solution)
Tick mark Image
Solve for X
Tick mark Image
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

t\left(-\frac{2}{3}\right)^{k-2}X\times \left(\frac{-2}{3}\right)^{3}=\left(\frac{-2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{2}{3}\right)^{3}=\left(\frac{-2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\left(\frac{-2}{3}\right)^{-2}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\left(-\frac{2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\frac{9}{4}
Calculate -\frac{2}{3} to the power of -2 and get \frac{9}{4}.
\left(-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}\right)X=\frac{9}{4}
The equation is in standard form.
\frac{\left(-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}\right)X}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}=\frac{\frac{9}{4}}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}
Divide both sides by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
X=\frac{\frac{9}{4}}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}
Dividing by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2} undoes the multiplication by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
X=-\frac{27}{8t\left(-\frac{2}{3}\right)^{k}}
Divide \frac{9}{4} by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
t\left(-\frac{2}{3}\right)^{k-2}X\times \left(\frac{-2}{3}\right)^{3}=\left(\frac{-2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{2}{3}\right)^{3}=\left(\frac{-2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\left(\frac{-2}{3}\right)^{-2}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\left(-\frac{2}{3}\right)^{-2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
t\left(-\frac{2}{3}\right)^{k-2}X\left(-\frac{8}{27}\right)=\frac{9}{4}
Calculate -\frac{2}{3} to the power of -2 and get \frac{9}{4}.
\left(-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}\right)X=\frac{9}{4}
The equation is in standard form.
\frac{\left(-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}\right)X}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}=\frac{\frac{9}{4}}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}
Divide both sides by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
X=\frac{\frac{9}{4}}{-\frac{8t\left(-\frac{2}{3}\right)^{k-2}}{27}}
Dividing by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2} undoes the multiplication by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.
X=-\frac{27}{8t\left(-\frac{2}{3}\right)^{k}}
Divide \frac{9}{4} by -\frac{8}{27}t\left(-\frac{2}{3}\right)^{k-2}.