Evaluate
\frac{4t\left(15-2t\right)}{5}
Expand
-\frac{8t^{2}}{5}+12t
Share
Copied to clipboard
t\times \frac{4\times 1}{5\times 2}\left(30-4t\right)
Multiply \frac{4}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
t\times \frac{4}{10}\left(30-4t\right)
Do the multiplications in the fraction \frac{4\times 1}{5\times 2}.
t\times \frac{2}{5}\left(30-4t\right)
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
t\times \frac{2}{5}\times 30+t\times \frac{2}{5}\left(-4\right)t
Use the distributive property to multiply t\times \frac{2}{5} by 30-4t.
t\times \frac{2}{5}\times 30+t^{2}\times \frac{2}{5}\left(-4\right)
Multiply t and t to get t^{2}.
t\times \frac{2\times 30}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Express \frac{2}{5}\times 30 as a single fraction.
t\times \frac{60}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Multiply 2 and 30 to get 60.
t\times 12+t^{2}\times \frac{2}{5}\left(-4\right)
Divide 60 by 5 to get 12.
t\times 12+t^{2}\times \frac{2\left(-4\right)}{5}
Express \frac{2}{5}\left(-4\right) as a single fraction.
t\times 12+t^{2}\times \frac{-8}{5}
Multiply 2 and -4 to get -8.
t\times 12+t^{2}\left(-\frac{8}{5}\right)
Fraction \frac{-8}{5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
t\times \frac{4\times 1}{5\times 2}\left(30-4t\right)
Multiply \frac{4}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
t\times \frac{4}{10}\left(30-4t\right)
Do the multiplications in the fraction \frac{4\times 1}{5\times 2}.
t\times \frac{2}{5}\left(30-4t\right)
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
t\times \frac{2}{5}\times 30+t\times \frac{2}{5}\left(-4\right)t
Use the distributive property to multiply t\times \frac{2}{5} by 30-4t.
t\times \frac{2}{5}\times 30+t^{2}\times \frac{2}{5}\left(-4\right)
Multiply t and t to get t^{2}.
t\times \frac{2\times 30}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Express \frac{2}{5}\times 30 as a single fraction.
t\times \frac{60}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Multiply 2 and 30 to get 60.
t\times 12+t^{2}\times \frac{2}{5}\left(-4\right)
Divide 60 by 5 to get 12.
t\times 12+t^{2}\times \frac{2\left(-4\right)}{5}
Express \frac{2}{5}\left(-4\right) as a single fraction.
t\times 12+t^{2}\times \frac{-8}{5}
Multiply 2 and -4 to get -8.
t\times 12+t^{2}\left(-\frac{8}{5}\right)
Fraction \frac{-8}{5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}