Solve for t
t=\frac{-2\sqrt{5}i+8}{7}\approx 1.142857143-0.638876565i
t=\frac{8+2\sqrt{5}i}{7}\approx 1.142857143+0.638876565i
Share
Copied to clipboard
-7t^{2}+16t=12
Combine t^{2} and -8t^{2} to get -7t^{2}.
-7t^{2}+16t-12=0
Subtract 12 from both sides.
t=\frac{-16±\sqrt{16^{2}-4\left(-7\right)\left(-12\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 16 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-16±\sqrt{256-4\left(-7\right)\left(-12\right)}}{2\left(-7\right)}
Square 16.
t=\frac{-16±\sqrt{256+28\left(-12\right)}}{2\left(-7\right)}
Multiply -4 times -7.
t=\frac{-16±\sqrt{256-336}}{2\left(-7\right)}
Multiply 28 times -12.
t=\frac{-16±\sqrt{-80}}{2\left(-7\right)}
Add 256 to -336.
t=\frac{-16±4\sqrt{5}i}{2\left(-7\right)}
Take the square root of -80.
t=\frac{-16±4\sqrt{5}i}{-14}
Multiply 2 times -7.
t=\frac{-16+4\sqrt{5}i}{-14}
Now solve the equation t=\frac{-16±4\sqrt{5}i}{-14} when ± is plus. Add -16 to 4i\sqrt{5}.
t=\frac{-2\sqrt{5}i+8}{7}
Divide -16+4i\sqrt{5} by -14.
t=\frac{-4\sqrt{5}i-16}{-14}
Now solve the equation t=\frac{-16±4\sqrt{5}i}{-14} when ± is minus. Subtract 4i\sqrt{5} from -16.
t=\frac{8+2\sqrt{5}i}{7}
Divide -16-4i\sqrt{5} by -14.
t=\frac{-2\sqrt{5}i+8}{7} t=\frac{8+2\sqrt{5}i}{7}
The equation is now solved.
-7t^{2}+16t=12
Combine t^{2} and -8t^{2} to get -7t^{2}.
\frac{-7t^{2}+16t}{-7}=\frac{12}{-7}
Divide both sides by -7.
t^{2}+\frac{16}{-7}t=\frac{12}{-7}
Dividing by -7 undoes the multiplication by -7.
t^{2}-\frac{16}{7}t=\frac{12}{-7}
Divide 16 by -7.
t^{2}-\frac{16}{7}t=-\frac{12}{7}
Divide 12 by -7.
t^{2}-\frac{16}{7}t+\left(-\frac{8}{7}\right)^{2}=-\frac{12}{7}+\left(-\frac{8}{7}\right)^{2}
Divide -\frac{16}{7}, the coefficient of the x term, by 2 to get -\frac{8}{7}. Then add the square of -\frac{8}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{16}{7}t+\frac{64}{49}=-\frac{12}{7}+\frac{64}{49}
Square -\frac{8}{7} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{16}{7}t+\frac{64}{49}=-\frac{20}{49}
Add -\frac{12}{7} to \frac{64}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{8}{7}\right)^{2}=-\frac{20}{49}
Factor t^{2}-\frac{16}{7}t+\frac{64}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{8}{7}\right)^{2}}=\sqrt{-\frac{20}{49}}
Take the square root of both sides of the equation.
t-\frac{8}{7}=\frac{2\sqrt{5}i}{7} t-\frac{8}{7}=-\frac{2\sqrt{5}i}{7}
Simplify.
t=\frac{8+2\sqrt{5}i}{7} t=\frac{-2\sqrt{5}i+8}{7}
Add \frac{8}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}