Solve for s (complex solution)
\left\{\begin{matrix}\\s=\frac{t}{2}\text{, }&\text{unconditionally}\\s\in \mathrm{C}\text{, }&t=k^{2}\end{matrix}\right.
Solve for s
\left\{\begin{matrix}\\s=\frac{t}{2}\text{, }&\text{unconditionally}\\s\in \mathrm{R}\text{, }&t=k^{2}\end{matrix}\right.
Solve for k (complex solution)
\left\{\begin{matrix}\\k=-\sqrt{t}\text{; }k=\sqrt{t}\text{, }&\text{unconditionally}\\k\in \mathrm{C}\text{, }&t=2s\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\sqrt{t}\text{; }k=-\sqrt{t}\text{, }&t\geq 0\\k\in \mathrm{R}\text{, }&t=2s\end{matrix}\right.
Share
Copied to clipboard
-2st-tk^{2}+2sk^{2}=-t^{2}
Subtract t^{2} from both sides. Anything subtracted from zero gives its negation.
-2st+2sk^{2}=-t^{2}+tk^{2}
Add tk^{2} to both sides.
\left(-2t+2k^{2}\right)s=-t^{2}+tk^{2}
Combine all terms containing s.
\left(2k^{2}-2t\right)s=tk^{2}-t^{2}
The equation is in standard form.
\frac{\left(2k^{2}-2t\right)s}{2k^{2}-2t}=\frac{t\left(k^{2}-t\right)}{2k^{2}-2t}
Divide both sides by -2t+2k^{2}.
s=\frac{t\left(k^{2}-t\right)}{2k^{2}-2t}
Dividing by -2t+2k^{2} undoes the multiplication by -2t+2k^{2}.
s=\frac{t}{2}
Divide t\left(-t+k^{2}\right) by -2t+2k^{2}.
-2st-tk^{2}+2sk^{2}=-t^{2}
Subtract t^{2} from both sides. Anything subtracted from zero gives its negation.
-2st+2sk^{2}=-t^{2}+tk^{2}
Add tk^{2} to both sides.
\left(-2t+2k^{2}\right)s=-t^{2}+tk^{2}
Combine all terms containing s.
\left(2k^{2}-2t\right)s=tk^{2}-t^{2}
The equation is in standard form.
\frac{\left(2k^{2}-2t\right)s}{2k^{2}-2t}=\frac{t\left(k^{2}-t\right)}{2k^{2}-2t}
Divide both sides by -2t+2k^{2}.
s=\frac{t\left(k^{2}-t\right)}{2k^{2}-2t}
Dividing by -2t+2k^{2} undoes the multiplication by -2t+2k^{2}.
s=\frac{t}{2}
Divide t\left(-t+k^{2}\right) by -2t+2k^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}