Solve for t
t=\frac{7+\sqrt{143}i}{4}\approx 1.75+2.989565186i
t=\frac{-\sqrt{143}i+7}{4}\approx 1.75-2.989565186i
Share
Copied to clipboard
t^{2}-\frac{7}{2}t+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-\frac{7}{2}\right)±\sqrt{\left(-\frac{7}{2}\right)^{2}-4\times 12}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{7}{2} for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{7}{2}\right)±\sqrt{\frac{49}{4}-4\times 12}}{2}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{7}{2}\right)±\sqrt{\frac{49}{4}-48}}{2}
Multiply -4 times 12.
t=\frac{-\left(-\frac{7}{2}\right)±\sqrt{-\frac{143}{4}}}{2}
Add \frac{49}{4} to -48.
t=\frac{-\left(-\frac{7}{2}\right)±\frac{\sqrt{143}i}{2}}{2}
Take the square root of -\frac{143}{4}.
t=\frac{\frac{7}{2}±\frac{\sqrt{143}i}{2}}{2}
The opposite of -\frac{7}{2} is \frac{7}{2}.
t=\frac{7+\sqrt{143}i}{2\times 2}
Now solve the equation t=\frac{\frac{7}{2}±\frac{\sqrt{143}i}{2}}{2} when ± is plus. Add \frac{7}{2} to \frac{i\sqrt{143}}{2}.
t=\frac{7+\sqrt{143}i}{4}
Divide \frac{7+i\sqrt{143}}{2} by 2.
t=\frac{-\sqrt{143}i+7}{2\times 2}
Now solve the equation t=\frac{\frac{7}{2}±\frac{\sqrt{143}i}{2}}{2} when ± is minus. Subtract \frac{i\sqrt{143}}{2} from \frac{7}{2}.
t=\frac{-\sqrt{143}i+7}{4}
Divide \frac{7-i\sqrt{143}}{2} by 2.
t=\frac{7+\sqrt{143}i}{4} t=\frac{-\sqrt{143}i+7}{4}
The equation is now solved.
t^{2}-\frac{7}{2}t+12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
t^{2}-\frac{7}{2}t+12-12=-12
Subtract 12 from both sides of the equation.
t^{2}-\frac{7}{2}t=-12
Subtracting 12 from itself leaves 0.
t^{2}-\frac{7}{2}t+\left(-\frac{7}{4}\right)^{2}=-12+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{7}{2}t+\frac{49}{16}=-12+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{7}{2}t+\frac{49}{16}=-\frac{143}{16}
Add -12 to \frac{49}{16}.
\left(t-\frac{7}{4}\right)^{2}=-\frac{143}{16}
Factor t^{2}-\frac{7}{2}t+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{7}{4}\right)^{2}}=\sqrt{-\frac{143}{16}}
Take the square root of both sides of the equation.
t-\frac{7}{4}=\frac{\sqrt{143}i}{4} t-\frac{7}{4}=-\frac{\sqrt{143}i}{4}
Simplify.
t=\frac{7+\sqrt{143}i}{4} t=\frac{-\sqrt{143}i+7}{4}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}