Solve for t
t=2
t=\frac{2}{3}\approx 0.666666667
Share
Copied to clipboard
t^{2}=4\left(1-2t+t^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-t\right)^{2}.
t^{2}=4-8t+4t^{2}
Use the distributive property to multiply 4 by 1-2t+t^{2}.
t^{2}-4=-8t+4t^{2}
Subtract 4 from both sides.
t^{2}-4+8t=4t^{2}
Add 8t to both sides.
t^{2}-4+8t-4t^{2}=0
Subtract 4t^{2} from both sides.
-3t^{2}-4+8t=0
Combine t^{2} and -4t^{2} to get -3t^{2}.
-3t^{2}+8t-4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-3\left(-4\right)=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3t^{2}+at+bt-4. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=6 b=2
The solution is the pair that gives sum 8.
\left(-3t^{2}+6t\right)+\left(2t-4\right)
Rewrite -3t^{2}+8t-4 as \left(-3t^{2}+6t\right)+\left(2t-4\right).
3t\left(-t+2\right)-2\left(-t+2\right)
Factor out 3t in the first and -2 in the second group.
\left(-t+2\right)\left(3t-2\right)
Factor out common term -t+2 by using distributive property.
t=2 t=\frac{2}{3}
To find equation solutions, solve -t+2=0 and 3t-2=0.
t^{2}=4\left(1-2t+t^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-t\right)^{2}.
t^{2}=4-8t+4t^{2}
Use the distributive property to multiply 4 by 1-2t+t^{2}.
t^{2}-4=-8t+4t^{2}
Subtract 4 from both sides.
t^{2}-4+8t=4t^{2}
Add 8t to both sides.
t^{2}-4+8t-4t^{2}=0
Subtract 4t^{2} from both sides.
-3t^{2}-4+8t=0
Combine t^{2} and -4t^{2} to get -3t^{2}.
-3t^{2}+8t-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 8 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-8±\sqrt{64-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
Square 8.
t=\frac{-8±\sqrt{64+12\left(-4\right)}}{2\left(-3\right)}
Multiply -4 times -3.
t=\frac{-8±\sqrt{64-48}}{2\left(-3\right)}
Multiply 12 times -4.
t=\frac{-8±\sqrt{16}}{2\left(-3\right)}
Add 64 to -48.
t=\frac{-8±4}{2\left(-3\right)}
Take the square root of 16.
t=\frac{-8±4}{-6}
Multiply 2 times -3.
t=-\frac{4}{-6}
Now solve the equation t=\frac{-8±4}{-6} when ± is plus. Add -8 to 4.
t=\frac{2}{3}
Reduce the fraction \frac{-4}{-6} to lowest terms by extracting and canceling out 2.
t=-\frac{12}{-6}
Now solve the equation t=\frac{-8±4}{-6} when ± is minus. Subtract 4 from -8.
t=2
Divide -12 by -6.
t=\frac{2}{3} t=2
The equation is now solved.
t^{2}=4\left(1-2t+t^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-t\right)^{2}.
t^{2}=4-8t+4t^{2}
Use the distributive property to multiply 4 by 1-2t+t^{2}.
t^{2}+8t=4+4t^{2}
Add 8t to both sides.
t^{2}+8t-4t^{2}=4
Subtract 4t^{2} from both sides.
-3t^{2}+8t=4
Combine t^{2} and -4t^{2} to get -3t^{2}.
\frac{-3t^{2}+8t}{-3}=\frac{4}{-3}
Divide both sides by -3.
t^{2}+\frac{8}{-3}t=\frac{4}{-3}
Dividing by -3 undoes the multiplication by -3.
t^{2}-\frac{8}{3}t=\frac{4}{-3}
Divide 8 by -3.
t^{2}-\frac{8}{3}t=-\frac{4}{3}
Divide 4 by -3.
t^{2}-\frac{8}{3}t+\left(-\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{8}{3}t+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{8}{3}t+\frac{16}{9}=\frac{4}{9}
Add -\frac{4}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{4}{3}\right)^{2}=\frac{4}{9}
Factor t^{2}-\frac{8}{3}t+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
t-\frac{4}{3}=\frac{2}{3} t-\frac{4}{3}=-\frac{2}{3}
Simplify.
t=2 t=\frac{2}{3}
Add \frac{4}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}