Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t-0.63845t^{2}=0
Subtract 0.63845t^{2} from both sides.
t\left(1-0.63845t\right)=0
Factor out t.
t=0 t=\frac{20000}{12769}
To find equation solutions, solve t=0 and 1-\frac{12769t}{20000}=0.
t-0.63845t^{2}=0
Subtract 0.63845t^{2} from both sides.
-0.63845t^{2}+t=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-1±\sqrt{1^{2}}}{2\left(-0.63845\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.63845 for a, 1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-1±1}{2\left(-0.63845\right)}
Take the square root of 1^{2}.
t=\frac{-1±1}{-1.2769}
Multiply 2 times -0.63845.
t=\frac{0}{-1.2769}
Now solve the equation t=\frac{-1±1}{-1.2769} when ± is plus. Add -1 to 1.
t=0
Divide 0 by -1.2769 by multiplying 0 by the reciprocal of -1.2769.
t=-\frac{2}{-1.2769}
Now solve the equation t=\frac{-1±1}{-1.2769} when ± is minus. Subtract 1 from -1.
t=\frac{20000}{12769}
Divide -2 by -1.2769 by multiplying -2 by the reciprocal of -1.2769.
t=0 t=\frac{20000}{12769}
The equation is now solved.
t-0.63845t^{2}=0
Subtract 0.63845t^{2} from both sides.
-0.63845t^{2}+t=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.63845t^{2}+t}{-0.63845}=\frac{0}{-0.63845}
Divide both sides of the equation by -0.63845, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{1}{-0.63845}t=\frac{0}{-0.63845}
Dividing by -0.63845 undoes the multiplication by -0.63845.
t^{2}-\frac{20000}{12769}t=\frac{0}{-0.63845}
Divide 1 by -0.63845 by multiplying 1 by the reciprocal of -0.63845.
t^{2}-\frac{20000}{12769}t=0
Divide 0 by -0.63845 by multiplying 0 by the reciprocal of -0.63845.
t^{2}-\frac{20000}{12769}t+\left(-\frac{10000}{12769}\right)^{2}=\left(-\frac{10000}{12769}\right)^{2}
Divide -\frac{20000}{12769}, the coefficient of the x term, by 2 to get -\frac{10000}{12769}. Then add the square of -\frac{10000}{12769} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{20000}{12769}t+\frac{100000000}{163047361}=\frac{100000000}{163047361}
Square -\frac{10000}{12769} by squaring both the numerator and the denominator of the fraction.
\left(t-\frac{10000}{12769}\right)^{2}=\frac{100000000}{163047361}
Factor t^{2}-\frac{20000}{12769}t+\frac{100000000}{163047361}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{10000}{12769}\right)^{2}}=\sqrt{\frac{100000000}{163047361}}
Take the square root of both sides of the equation.
t-\frac{10000}{12769}=\frac{10000}{12769} t-\frac{10000}{12769}=-\frac{10000}{12769}
Simplify.
t=\frac{20000}{12769} t=0
Add \frac{10000}{12769} to both sides of the equation.