Skip to main content
Solve for T (complex solution)
Tick mark Image
Solve for T
Tick mark Image

Similar Problems from Web Search

Share

t=\frac{T}{\sqrt{\frac{c^{2}}{c^{2}}-\frac{v^{2}}{c^{2}}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c^{2}}{c^{2}}.
t=\frac{T}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}
Since \frac{c^{2}}{c^{2}} and \frac{v^{2}}{c^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{T}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}=t
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}T=t
The equation is in standard form.
\frac{\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}T\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}=\frac{t\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Divide both sides by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
T=\frac{t\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Dividing by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1} undoes the multiplication by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
T=\sqrt{-\frac{v^{2}}{c^{2}}+1}t
Divide t by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
t=\frac{T}{\sqrt{\frac{c^{2}}{c^{2}}-\frac{v^{2}}{c^{2}}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c^{2}}{c^{2}}.
t=\frac{T}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}
Since \frac{c^{2}}{c^{2}} and \frac{v^{2}}{c^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{T}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}=t
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}T=t
The equation is in standard form.
\frac{\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}T\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}=\frac{t\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Divide both sides by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
T=\frac{t\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Dividing by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1} undoes the multiplication by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
T=\frac{t\sqrt{\left(c-v\right)\left(v+c\right)}}{|c|}
Divide t by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.