Solve for L (complex solution)
\left\{\begin{matrix}L=-\frac{t\left(n^{2}-x^{2}\right)}{2x}\text{, }&x\neq 0\text{ and }x\neq n\text{ and }x\neq -n\\L\in \mathrm{C}\text{, }&t=0\text{ and }x=0\text{ and }n\neq 0\end{matrix}\right.
Solve for L
\left\{\begin{matrix}L=-\frac{t\left(n^{2}-x^{2}\right)}{2x}\text{, }&x\neq 0\text{ and }|x|\neq |n|\\L\in \mathrm{R}\text{, }&t=0\text{ and }x=0\text{ and }n\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
t\left(x+n\right)\left(x-n\right)=2xL
Multiply both sides of the equation by \left(x+n\right)\left(x-n\right).
\left(tx+tn\right)\left(x-n\right)=2xL
Use the distributive property to multiply t by x+n.
tx^{2}-tn^{2}=2xL
Use the distributive property to multiply tx+tn by x-n and combine like terms.
2xL=tx^{2}-tn^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{2xL}{2x}=\frac{t\left(x-n\right)\left(x+n\right)}{2x}
Divide both sides by 2x.
L=\frac{t\left(x-n\right)\left(x+n\right)}{2x}
Dividing by 2x undoes the multiplication by 2x.
t\left(x+n\right)\left(x-n\right)=2xL
Multiply both sides of the equation by \left(x+n\right)\left(x-n\right).
\left(tx+tn\right)\left(x-n\right)=2xL
Use the distributive property to multiply t by x+n.
tx^{2}-tn^{2}=2xL
Use the distributive property to multiply tx+tn by x-n and combine like terms.
2xL=tx^{2}-tn^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{2xL}{2x}=\frac{t\left(x-n\right)\left(x+n\right)}{2x}
Divide both sides by 2x.
L=\frac{t\left(x-n\right)\left(x+n\right)}{2x}
Dividing by 2x undoes the multiplication by 2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}