Solve for t
t = -\frac{13400 \sqrt{2618368235}}{74810521} \approx -9.16552784
Assign t
t≔-\frac{13400\sqrt{2618368235}}{74810521}
Share
Copied to clipboard
t=\frac{-0.0134-0}{\sqrt{\frac{0.004411^{2}}{35}+\frac{0.00744^{2}}{35}}}
Subtract 0.80234 from 0.78894 to get -0.0134.
t=\frac{-0.0134}{\sqrt{\frac{0.004411^{2}}{35}+\frac{0.00744^{2}}{35}}}
Subtract 0 from -0.0134 to get -0.0134.
t=\frac{-0.0134}{\sqrt{\frac{0.000019456921}{35}+\frac{0.00744^{2}}{35}}}
Calculate 0.004411 to the power of 2 and get 0.000019456921.
t=\frac{-0.0134}{\sqrt{\frac{19456921}{35000000000000}+\frac{0.00744^{2}}{35}}}
Expand \frac{0.000019456921}{35} by multiplying both numerator and the denominator by 1000000000000.
t=\frac{-0.0134}{\sqrt{\frac{19456921}{35000000000000}+\frac{0.0000553536}{35}}}
Calculate 0.00744 to the power of 2 and get 0.0000553536.
t=\frac{-0.0134}{\sqrt{\frac{19456921}{35000000000000}+\frac{553536}{350000000000}}}
Expand \frac{0.0000553536}{35} by multiplying both numerator and the denominator by 10000000000.
t=\frac{-0.0134}{\sqrt{\frac{19456921}{35000000000000}+\frac{8649}{5468750000}}}
Reduce the fraction \frac{553536}{350000000000} to lowest terms by extracting and canceling out 64.
t=\frac{-0.0134}{\sqrt{\frac{19456921}{35000000000000}+\frac{55353600}{35000000000000}}}
Least common multiple of 35000000000000 and 5468750000 is 35000000000000. Convert \frac{19456921}{35000000000000} and \frac{8649}{5468750000} to fractions with denominator 35000000000000.
t=\frac{-0.0134}{\sqrt{\frac{19456921+55353600}{35000000000000}}}
Since \frac{19456921}{35000000000000} and \frac{55353600}{35000000000000} have the same denominator, add them by adding their numerators.
t=\frac{-0.0134}{\sqrt{\frac{74810521}{35000000000000}}}
Add 19456921 and 55353600 to get 74810521.
t=\frac{-0.0134}{\frac{\sqrt{74810521}}{\sqrt{35000000000000}}}
Rewrite the square root of the division \sqrt{\frac{74810521}{35000000000000}} as the division of square roots \frac{\sqrt{74810521}}{\sqrt{35000000000000}}.
t=\frac{-0.0134}{\frac{\sqrt{74810521}}{1000000\sqrt{35}}}
Factor 35000000000000=1000000^{2}\times 35. Rewrite the square root of the product \sqrt{1000000^{2}\times 35} as the product of square roots \sqrt{1000000^{2}}\sqrt{35}. Take the square root of 1000000^{2}.
t=\frac{-0.0134}{\frac{\sqrt{74810521}\sqrt{35}}{1000000\left(\sqrt{35}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{74810521}}{1000000\sqrt{35}} by multiplying numerator and denominator by \sqrt{35}.
t=\frac{-0.0134}{\frac{\sqrt{74810521}\sqrt{35}}{1000000\times 35}}
The square of \sqrt{35} is 35.
t=\frac{-0.0134}{\frac{\sqrt{2618368235}}{1000000\times 35}}
To multiply \sqrt{74810521} and \sqrt{35}, multiply the numbers under the square root.
t=\frac{-0.0134}{\frac{\sqrt{2618368235}}{35000000}}
Multiply 1000000 and 35 to get 35000000.
t=\frac{-0.0134\times 35000000}{\sqrt{2618368235}}
Divide -0.0134 by \frac{\sqrt{2618368235}}{35000000} by multiplying -0.0134 by the reciprocal of \frac{\sqrt{2618368235}}{35000000}.
t=\frac{-0.0134\times 35000000\sqrt{2618368235}}{\left(\sqrt{2618368235}\right)^{2}}
Rationalize the denominator of \frac{-0.0134\times 35000000}{\sqrt{2618368235}} by multiplying numerator and denominator by \sqrt{2618368235}.
t=\frac{-0.0134\times 35000000\sqrt{2618368235}}{2618368235}
The square of \sqrt{2618368235} is 2618368235.
t=\frac{-469000\sqrt{2618368235}}{2618368235}
Multiply -0.0134 and 35000000 to get -469000.
t=-\frac{13400}{74810521}\sqrt{2618368235}
Divide -469000\sqrt{2618368235} by 2618368235 to get -\frac{13400}{74810521}\sqrt{2618368235}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}