Solve for g
\left\{\begin{matrix}g=-\frac{t\left(x+2\right)}{1-2x}\text{, }&x\neq -2\text{ and }t\neq 0\text{ and }x\neq \frac{1}{2}\\g\neq 0\text{, }&t=0\text{ and }x=\frac{1}{2}\end{matrix}\right.
Solve for t
t=-\frac{g\left(1-2x\right)}{x+2}
g\neq 0\text{ and }x\neq -2
Graph
Share
Copied to clipboard
\left(x+2\right)t=g\left(2x-1\right)
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by g\left(x+2\right), the least common multiple of g,x+2.
xt+2t=g\left(2x-1\right)
Use the distributive property to multiply x+2 by t.
xt+2t=2gx-g
Use the distributive property to multiply g by 2x-1.
2gx-g=xt+2t
Swap sides so that all variable terms are on the left hand side.
\left(2x-1\right)g=xt+2t
Combine all terms containing g.
\left(2x-1\right)g=tx+2t
The equation is in standard form.
\frac{\left(2x-1\right)g}{2x-1}=\frac{t\left(x+2\right)}{2x-1}
Divide both sides by 2x-1.
g=\frac{t\left(x+2\right)}{2x-1}
Dividing by 2x-1 undoes the multiplication by 2x-1.
g=\frac{t\left(x+2\right)}{2x-1}\text{, }g\neq 0
Variable g cannot be equal to 0.
\left(x+2\right)t=g\left(2x-1\right)
Multiply both sides of the equation by g\left(x+2\right), the least common multiple of g,x+2.
xt+2t=g\left(2x-1\right)
Use the distributive property to multiply x+2 by t.
xt+2t=2gx-g
Use the distributive property to multiply g by 2x-1.
\left(x+2\right)t=2gx-g
Combine all terms containing t.
\frac{\left(x+2\right)t}{x+2}=\frac{g\left(2x-1\right)}{x+2}
Divide both sides by x+2.
t=\frac{g\left(2x-1\right)}{x+2}
Dividing by x+2 undoes the multiplication by x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}