Solve for s
s=6x-32
Solve for x
x=\frac{s+32}{6}
Graph
Share
Copied to clipboard
s-x+3-5\left(x-5\right)=-4
To find the opposite of x-3, find the opposite of each term.
s-x+3-5x+25=-4
Use the distributive property to multiply -5 by x-5.
s-6x+3+25=-4
Combine -x and -5x to get -6x.
s-6x+28=-4
Add 3 and 25 to get 28.
s+28=-4+6x
Add 6x to both sides.
s=-4+6x-28
Subtract 28 from both sides.
s=-32+6x
Subtract 28 from -4 to get -32.
s-x+3-5\left(x-5\right)=-4
To find the opposite of x-3, find the opposite of each term.
s-x+3-5x+25=-4
Use the distributive property to multiply -5 by x-5.
s-6x+3+25=-4
Combine -x and -5x to get -6x.
s-6x+28=-4
Add 3 and 25 to get 28.
-6x+28=-4-s
Subtract s from both sides.
-6x=-4-s-28
Subtract 28 from both sides.
-6x=-32-s
Subtract 28 from -4 to get -32.
-6x=-s-32
The equation is in standard form.
\frac{-6x}{-6}=\frac{-s-32}{-6}
Divide both sides by -6.
x=\frac{-s-32}{-6}
Dividing by -6 undoes the multiplication by -6.
x=\frac{s}{6}+\frac{16}{3}
Divide -32-s by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}