Solve for p
p=-\frac{7r}{9-rs}
r\neq 0\text{ and }s\neq \frac{9}{r}
Solve for r
r=-\frac{9p}{7-ps}
p\neq 0\text{ and }s\neq \frac{7}{p}
Share
Copied to clipboard
prs-p\times 9=r\times 7
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by pr, the least common multiple of r,p.
prs-9p=7r
Reorder the terms.
\left(rs-9\right)p=7r
Combine all terms containing p.
\frac{\left(rs-9\right)p}{rs-9}=\frac{7r}{rs-9}
Divide both sides by sr-9.
p=\frac{7r}{rs-9}
Dividing by sr-9 undoes the multiplication by sr-9.
p=\frac{7r}{rs-9}\text{, }p\neq 0
Variable p cannot be equal to 0.
prs-p\times 9=r\times 7
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by pr, the least common multiple of r,p.
prs-p\times 9-r\times 7=0
Subtract r\times 7 from both sides.
prs-9p-r\times 7=0
Multiply -1 and 9 to get -9.
prs-9p-7r=0
Multiply -1 and 7 to get -7.
prs-7r=9p
Add 9p to both sides. Anything plus zero gives itself.
\left(ps-7\right)r=9p
Combine all terms containing r.
\frac{\left(ps-7\right)r}{ps-7}=\frac{9p}{ps-7}
Divide both sides by sp-7.
r=\frac{9p}{ps-7}
Dividing by sp-7 undoes the multiplication by sp-7.
r=\frac{9p}{ps-7}\text{, }r\neq 0
Variable r cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}