Skip to main content
Solve for s
Tick mark Image
Graph

Similar Problems from Web Search

Share

2s\left(\frac{\pi }{2}+x\right)-2\sin(\frac{\pi }{2}+x)=0
Multiply both sides of the equation by 2.
2s\times \frac{\pi }{2}+2sx-2\sin(\frac{\pi }{2}+x)=0
Use the distributive property to multiply 2s by \frac{\pi }{2}+x.
\frac{2\pi }{2}s+2sx-2\sin(\frac{\pi }{2}+x)=0
Express 2\times \frac{\pi }{2} as a single fraction.
\pi s+2sx-2\sin(\frac{\pi }{2}+x)=0
Cancel out 2 and 2.
\pi s+2sx=0+2\sin(\frac{\pi }{2}+x)
Add 2\sin(\frac{\pi }{2}+x) to both sides.
\pi s+2sx=2\sin(\frac{\pi }{2}+x)
Anything plus zero gives itself.
\left(\pi +2x\right)s=2\sin(\frac{\pi }{2}+x)
Combine all terms containing s.
\left(2x+\pi \right)s=2\sin(x+\frac{\pi }{2})
The equation is in standard form.
\frac{\left(2x+\pi \right)s}{2x+\pi }=\frac{2\sin(\frac{2x+\pi }{2})}{2x+\pi }
Divide both sides by \pi +2x.
s=\frac{2\sin(\frac{2x+\pi }{2})}{2x+\pi }
Dividing by \pi +2x undoes the multiplication by \pi +2x.