Solve for s
\left\{\begin{matrix}s=\frac{2\sin(\frac{2x+\pi }{2})}{2x+\pi }\text{, }&x\neq -\frac{\pi }{2}\\s\in \mathrm{R}\text{, }&x=-\frac{\pi }{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
2s\left(\frac{\pi }{2}+x\right)-2\sin(\frac{\pi }{2}+x)=0
Multiply both sides of the equation by 2.
2s\times \frac{\pi }{2}+2sx-2\sin(\frac{\pi }{2}+x)=0
Use the distributive property to multiply 2s by \frac{\pi }{2}+x.
\frac{2\pi }{2}s+2sx-2\sin(\frac{\pi }{2}+x)=0
Express 2\times \frac{\pi }{2} as a single fraction.
\pi s+2sx-2\sin(\frac{\pi }{2}+x)=0
Cancel out 2 and 2.
\pi s+2sx=0+2\sin(\frac{\pi }{2}+x)
Add 2\sin(\frac{\pi }{2}+x) to both sides.
\pi s+2sx=2\sin(\frac{\pi }{2}+x)
Anything plus zero gives itself.
\left(\pi +2x\right)s=2\sin(\frac{\pi }{2}+x)
Combine all terms containing s.
\left(2x+\pi \right)s=2\sin(x+\frac{\pi }{2})
The equation is in standard form.
\frac{\left(2x+\pi \right)s}{2x+\pi }=\frac{2\sin(\frac{2x+\pi }{2})}{2x+\pi }
Divide both sides by \pi +2x.
s=\frac{2\sin(\frac{2x+\pi }{2})}{2x+\pi }
Dividing by \pi +2x undoes the multiplication by \pi +2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}