Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{xr^{2}+sx^{r}+r}{rx+1}\text{, }&r=0\text{ or }x\neq -\frac{1}{r}\\a\in \mathrm{C}\text{, }&s=0\text{ and }x=-\frac{1}{r}\text{ and }r\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{xr^{2}+sx^{r}+r}{rx+1}\text{, }&\left(r=0\text{ and }x\neq 0\right)\text{ or }\left(x\neq -\frac{1}{r}\text{ and }x<0\text{ and }Denominator(r)\text{bmod}2=1\right)\text{ or }\left(x=0\text{ and }r>0\right)\text{ or }\left(x\neq -\frac{1}{r}\text{ and }x>0\right)\\a\in \mathrm{R}\text{, }&r\neq 0\text{ and }\left(r<0\text{ or }Denominator(r)\text{bmod}2=1\right)\text{ and }s=0\text{ and }x=-\frac{1}{r}\end{matrix}\right.
Share
Copied to clipboard
sx^{r}-\left(ra-r^{2}\right)x+1r-a=0
Use the distributive property to multiply r by a-r.
sx^{r}-\left(rax-r^{2}x\right)+1r-a=0
Use the distributive property to multiply ra-r^{2} by x.
sx^{r}-rax+r^{2}x+1r-a=0
To find the opposite of rax-r^{2}x, find the opposite of each term.
-rax+r^{2}x+1r-a=-sx^{r}
Subtract sx^{r} from both sides. Anything subtracted from zero gives its negation.
-rax+1r-a=-sx^{r}-r^{2}x
Subtract r^{2}x from both sides.
-rax-a=-sx^{r}-r^{2}x-r
Subtract 1r from both sides.
-arx-a=-xr^{2}-sx^{r}-r
Reorder the terms.
\left(-rx-1\right)a=-xr^{2}-sx^{r}-r
Combine all terms containing a.
\frac{\left(-rx-1\right)a}{-rx-1}=\frac{-xr^{2}-sx^{r}-r}{-rx-1}
Divide both sides by -rx-1.
a=\frac{-xr^{2}-sx^{r}-r}{-rx-1}
Dividing by -rx-1 undoes the multiplication by -rx-1.
a=\frac{xr^{2}+sx^{r}+r}{rx+1}
Divide -xr^{2}-sx^{r}-r by -rx-1.
sx^{r}-\left(ra-r^{2}\right)x+1r-a=0
Use the distributive property to multiply r by a-r.
sx^{r}-\left(rax-r^{2}x\right)+1r-a=0
Use the distributive property to multiply ra-r^{2} by x.
sx^{r}-rax+r^{2}x+1r-a=0
To find the opposite of rax-r^{2}x, find the opposite of each term.
-rax+r^{2}x+1r-a=-sx^{r}
Subtract sx^{r} from both sides. Anything subtracted from zero gives its negation.
-rax+1r-a=-sx^{r}-r^{2}x
Subtract r^{2}x from both sides.
-rax-a=-sx^{r}-r^{2}x-r
Subtract 1r from both sides.
-arx-a=-xr^{2}-sx^{r}-r
Reorder the terms.
\left(-rx-1\right)a=-xr^{2}-sx^{r}-r
Combine all terms containing a.
\frac{\left(-rx-1\right)a}{-rx-1}=\frac{-xr^{2}-sx^{r}-r}{-rx-1}
Divide both sides by -rx-1.
a=\frac{-xr^{2}-sx^{r}-r}{-rx-1}
Dividing by -rx-1 undoes the multiplication by -rx-1.
a=\frac{xr^{2}+sx^{r}+r}{rx+1}
Divide -xr^{2}-sx^{r}-r by -rx-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}