Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(s^{4}-81\right)\left(s^{4}+81\right)
Rewrite s^{8}-6561 as \left(s^{4}\right)^{2}-81^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(s^{2}-9\right)\left(s^{2}+9\right)
Consider s^{4}-81. Rewrite s^{4}-81 as \left(s^{2}\right)^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(s-3\right)\left(s+3\right)
Consider s^{2}-9. Rewrite s^{2}-9 as s^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(s-3\right)\left(s+3\right)\left(s^{2}+9\right)\left(s^{4}+81\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: s^{2}+9,s^{4}+81.