Factor
\left(s-8\right)\left(s-5\right)s^{3}
Evaluate
\left(s-8\right)\left(s-5\right)s^{3}
Share
Copied to clipboard
s^{3}\left(s^{2}-13s+40\right)
Factor out s^{3}.
a+b=-13 ab=1\times 40=40
Consider s^{2}-13s+40. Factor the expression by grouping. First, the expression needs to be rewritten as s^{2}+as+bs+40. To find a and b, set up a system to be solved.
-1,-40 -2,-20 -4,-10 -5,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 40.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Calculate the sum for each pair.
a=-8 b=-5
The solution is the pair that gives sum -13.
\left(s^{2}-8s\right)+\left(-5s+40\right)
Rewrite s^{2}-13s+40 as \left(s^{2}-8s\right)+\left(-5s+40\right).
s\left(s-8\right)-5\left(s-8\right)
Factor out s in the first and -5 in the second group.
\left(s-8\right)\left(s-5\right)
Factor out common term s-8 by using distributive property.
s^{3}\left(s-8\right)\left(s-5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}