Skip to main content
Solve for s
Tick mark Image

Similar Problems from Web Search

Share

s^{2}-\left(-14\right)=-3s
Subtract -14 from both sides.
s^{2}+14=-3s
The opposite of -14 is 14.
s^{2}+14+3s=0
Add 3s to both sides.
s^{2}+3s+14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-3±\sqrt{3^{2}-4\times 14}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-3±\sqrt{9-4\times 14}}{2}
Square 3.
s=\frac{-3±\sqrt{9-56}}{2}
Multiply -4 times 14.
s=\frac{-3±\sqrt{-47}}{2}
Add 9 to -56.
s=\frac{-3±\sqrt{47}i}{2}
Take the square root of -47.
s=\frac{-3+\sqrt{47}i}{2}
Now solve the equation s=\frac{-3±\sqrt{47}i}{2} when ± is plus. Add -3 to i\sqrt{47}.
s=\frac{-\sqrt{47}i-3}{2}
Now solve the equation s=\frac{-3±\sqrt{47}i}{2} when ± is minus. Subtract i\sqrt{47} from -3.
s=\frac{-3+\sqrt{47}i}{2} s=\frac{-\sqrt{47}i-3}{2}
The equation is now solved.
s^{2}+3s=-14
Add 3s to both sides.
s^{2}+3s+\left(\frac{3}{2}\right)^{2}=-14+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}+3s+\frac{9}{4}=-14+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
s^{2}+3s+\frac{9}{4}=-\frac{47}{4}
Add -14 to \frac{9}{4}.
\left(s+\frac{3}{2}\right)^{2}=-\frac{47}{4}
Factor s^{2}+3s+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{47}{4}}
Take the square root of both sides of the equation.
s+\frac{3}{2}=\frac{\sqrt{47}i}{2} s+\frac{3}{2}=-\frac{\sqrt{47}i}{2}
Simplify.
s=\frac{-3+\sqrt{47}i}{2} s=\frac{-\sqrt{47}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.