Solve for s
s=\frac{-3+\sqrt{47}i}{2}\approx -1.5+3.4278273i
s=\frac{-\sqrt{47}i-3}{2}\approx -1.5-3.4278273i
Share
Copied to clipboard
s^{2}-\left(-14\right)=-3s
Subtract -14 from both sides.
s^{2}+14=-3s
The opposite of -14 is 14.
s^{2}+14+3s=0
Add 3s to both sides.
s^{2}+3s+14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-3±\sqrt{3^{2}-4\times 14}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-3±\sqrt{9-4\times 14}}{2}
Square 3.
s=\frac{-3±\sqrt{9-56}}{2}
Multiply -4 times 14.
s=\frac{-3±\sqrt{-47}}{2}
Add 9 to -56.
s=\frac{-3±\sqrt{47}i}{2}
Take the square root of -47.
s=\frac{-3+\sqrt{47}i}{2}
Now solve the equation s=\frac{-3±\sqrt{47}i}{2} when ± is plus. Add -3 to i\sqrt{47}.
s=\frac{-\sqrt{47}i-3}{2}
Now solve the equation s=\frac{-3±\sqrt{47}i}{2} when ± is minus. Subtract i\sqrt{47} from -3.
s=\frac{-3+\sqrt{47}i}{2} s=\frac{-\sqrt{47}i-3}{2}
The equation is now solved.
s^{2}+3s=-14
Add 3s to both sides.
s^{2}+3s+\left(\frac{3}{2}\right)^{2}=-14+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}+3s+\frac{9}{4}=-14+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
s^{2}+3s+\frac{9}{4}=-\frac{47}{4}
Add -14 to \frac{9}{4}.
\left(s+\frac{3}{2}\right)^{2}=-\frac{47}{4}
Factor s^{2}+3s+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{47}{4}}
Take the square root of both sides of the equation.
s+\frac{3}{2}=\frac{\sqrt{47}i}{2} s+\frac{3}{2}=-\frac{\sqrt{47}i}{2}
Simplify.
s=\frac{-3+\sqrt{47}i}{2} s=\frac{-\sqrt{47}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}