Solve for t
t=\frac{4}{s-1}
s\neq 1
Solve for s
s=\frac{t+4}{t}
t\neq 0
Share
Copied to clipboard
st=t+4
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by t.
st-t=4
Subtract t from both sides.
\left(s-1\right)t=4
Combine all terms containing t.
\frac{\left(s-1\right)t}{s-1}=\frac{4}{s-1}
Divide both sides by s-1.
t=\frac{4}{s-1}
Dividing by s-1 undoes the multiplication by s-1.
t=\frac{4}{s-1}\text{, }t\neq 0
Variable t cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}