Solve for t
\left\{\begin{matrix}t=-\frac{50-s}{v_{0}+2}\text{, }&v_{0}\neq -2\\t\in \mathrm{R}\text{, }&s=50\text{ and }v_{0}=-2\end{matrix}\right.
Solve for s
s=tv_{0}+2t+50
Share
Copied to clipboard
s=2t+v_{0}t+50
Divide 4 by 2 to get 2.
2t+v_{0}t+50=s
Swap sides so that all variable terms are on the left hand side.
2t+v_{0}t=s-50
Subtract 50 from both sides.
\left(2+v_{0}\right)t=s-50
Combine all terms containing t.
\left(v_{0}+2\right)t=s-50
The equation is in standard form.
\frac{\left(v_{0}+2\right)t}{v_{0}+2}=\frac{s-50}{v_{0}+2}
Divide both sides by 2+v_{0}.
t=\frac{s-50}{v_{0}+2}
Dividing by 2+v_{0} undoes the multiplication by 2+v_{0}.
s=2t+v_{0}t+50
Divide 4 by 2 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}