Solve for s
s = -\frac{5771}{2} = -2885\frac{1}{2} = -2885.5
Assign s
s≔-\frac{5771}{2}
Share
Copied to clipboard
s=30+\frac{1}{2}-9\times 81\times 2^{2}
Multiply 15 and 2 to get 30.
s=\frac{60}{2}+\frac{1}{2}-9\times 81\times 2^{2}
Convert 30 to fraction \frac{60}{2}.
s=\frac{60+1}{2}-9\times 81\times 2^{2}
Since \frac{60}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
s=\frac{61}{2}-9\times 81\times 2^{2}
Add 60 and 1 to get 61.
s=\frac{61}{2}-729\times 2^{2}
Multiply 9 and 81 to get 729.
s=\frac{61}{2}-729\times 4
Calculate 2 to the power of 2 and get 4.
s=\frac{61}{2}-2916
Multiply 729 and 4 to get 2916.
s=\frac{61}{2}-\frac{5832}{2}
Convert 2916 to fraction \frac{5832}{2}.
s=\frac{61-5832}{2}
Since \frac{61}{2} and \frac{5832}{2} have the same denominator, subtract them by subtracting their numerators.
s=-\frac{5771}{2}
Subtract 5832 from 61 to get -5771.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}