Solve for s
s=-\frac{10}{11}\approx -0.909090909
Share
Copied to clipboard
s+3=7s+21-\left(8-5s\right)
Use the distributive property to multiply 7 by s+3.
s+3=7s+21-8-\left(-5s\right)
To find the opposite of 8-5s, find the opposite of each term.
s+3=7s+21-8+5s
The opposite of -5s is 5s.
s+3=7s+13+5s
Subtract 8 from 21 to get 13.
s+3=12s+13
Combine 7s and 5s to get 12s.
s+3-12s=13
Subtract 12s from both sides.
-11s+3=13
Combine s and -12s to get -11s.
-11s=13-3
Subtract 3 from both sides.
-11s=10
Subtract 3 from 13 to get 10.
s=\frac{10}{-11}
Divide both sides by -11.
s=-\frac{10}{11}
Fraction \frac{10}{-11} can be rewritten as -\frac{10}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}