Evaluate
r^{13}
Differentiate w.r.t. r
13r^{12}
Share
Copied to clipboard
r^{1}r^{1}r^{11}
Use the rules of exponents to simplify the expression.
r^{1+1+11}
Use the Multiplication Rule for Exponents.
r^{2+11}
Add the exponents 1 and 1.
r^{13}
Add the exponents 2 and 11.
\frac{\mathrm{d}}{\mathrm{d}r}(r^{2}r^{11})
Multiply r and r to get r^{2}.
\frac{\mathrm{d}}{\mathrm{d}r}(r^{13})
To multiply powers of the same base, add their exponents. Add 2 and 11 to get 13.
13r^{13-1}
The derivative of ax^{n} is nax^{n-1}.
13r^{12}
Subtract 1 from 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}