Solve for r
r=\frac{-\sqrt{47}i+14}{9}\approx 1.555555556-0.7617394i
r=\frac{14+\sqrt{47}i}{9}\approx 1.555555556+0.7617394i
Share
Copied to clipboard
28r-9r^{2}-27=0
Combine r and 27r to get 28r.
-9r^{2}+28r-27=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-28±\sqrt{28^{2}-4\left(-9\right)\left(-27\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 28 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-28±\sqrt{784-4\left(-9\right)\left(-27\right)}}{2\left(-9\right)}
Square 28.
r=\frac{-28±\sqrt{784+36\left(-27\right)}}{2\left(-9\right)}
Multiply -4 times -9.
r=\frac{-28±\sqrt{784-972}}{2\left(-9\right)}
Multiply 36 times -27.
r=\frac{-28±\sqrt{-188}}{2\left(-9\right)}
Add 784 to -972.
r=\frac{-28±2\sqrt{47}i}{2\left(-9\right)}
Take the square root of -188.
r=\frac{-28±2\sqrt{47}i}{-18}
Multiply 2 times -9.
r=\frac{-28+2\sqrt{47}i}{-18}
Now solve the equation r=\frac{-28±2\sqrt{47}i}{-18} when ± is plus. Add -28 to 2i\sqrt{47}.
r=\frac{-\sqrt{47}i+14}{9}
Divide -28+2i\sqrt{47} by -18.
r=\frac{-2\sqrt{47}i-28}{-18}
Now solve the equation r=\frac{-28±2\sqrt{47}i}{-18} when ± is minus. Subtract 2i\sqrt{47} from -28.
r=\frac{14+\sqrt{47}i}{9}
Divide -28-2i\sqrt{47} by -18.
r=\frac{-\sqrt{47}i+14}{9} r=\frac{14+\sqrt{47}i}{9}
The equation is now solved.
28r-9r^{2}-27=0
Combine r and 27r to get 28r.
28r-9r^{2}=27
Add 27 to both sides. Anything plus zero gives itself.
-9r^{2}+28r=27
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9r^{2}+28r}{-9}=\frac{27}{-9}
Divide both sides by -9.
r^{2}+\frac{28}{-9}r=\frac{27}{-9}
Dividing by -9 undoes the multiplication by -9.
r^{2}-\frac{28}{9}r=\frac{27}{-9}
Divide 28 by -9.
r^{2}-\frac{28}{9}r=-3
Divide 27 by -9.
r^{2}-\frac{28}{9}r+\left(-\frac{14}{9}\right)^{2}=-3+\left(-\frac{14}{9}\right)^{2}
Divide -\frac{28}{9}, the coefficient of the x term, by 2 to get -\frac{14}{9}. Then add the square of -\frac{14}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-\frac{28}{9}r+\frac{196}{81}=-3+\frac{196}{81}
Square -\frac{14}{9} by squaring both the numerator and the denominator of the fraction.
r^{2}-\frac{28}{9}r+\frac{196}{81}=-\frac{47}{81}
Add -3 to \frac{196}{81}.
\left(r-\frac{14}{9}\right)^{2}=-\frac{47}{81}
Factor r^{2}-\frac{28}{9}r+\frac{196}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{14}{9}\right)^{2}}=\sqrt{-\frac{47}{81}}
Take the square root of both sides of the equation.
r-\frac{14}{9}=\frac{\sqrt{47}i}{9} r-\frac{14}{9}=-\frac{\sqrt{47}i}{9}
Simplify.
r=\frac{14+\sqrt{47}i}{9} r=\frac{-\sqrt{47}i+14}{9}
Add \frac{14}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}