Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

\left(r\left(-\Delta \right)y+rt\right)\left(t+dy\right)=r
Use the distributive property to multiply r by \left(-\Delta \right)y+t.
r\left(-\Delta \right)yt+r\left(-\Delta \right)dy^{2}+rt^{2}+rtdy=r
Use the distributive property to multiply r\left(-\Delta \right)y+rt by t+dy.
r\left(-\Delta \right)dy^{2}+rt^{2}+rtdy=r-r\left(-\Delta \right)yt
Subtract r\left(-\Delta \right)yt from both sides.
r\left(-\Delta \right)dy^{2}+rtdy=r-r\left(-\Delta \right)yt-rt^{2}
Subtract rt^{2} from both sides.
r\left(-1\right)\Delta dy^{2}+rtdy=r+r\Delta yt-rt^{2}
Multiply -1 and -1 to get 1.
\left(r\left(-1\right)\Delta y^{2}+rty\right)d=r+r\Delta yt-rt^{2}
Combine all terms containing d.
\left(rty-r\Delta y^{2}\right)d=rty\Delta -rt^{2}+r
The equation is in standard form.
\frac{\left(rty-r\Delta y^{2}\right)d}{rty-r\Delta y^{2}}=\frac{r\left(ty\Delta -t^{2}+1\right)}{rty-r\Delta y^{2}}
Divide both sides by -r\Delta y^{2}+rty.
d=\frac{r\left(ty\Delta -t^{2}+1\right)}{rty-r\Delta y^{2}}
Dividing by -r\Delta y^{2}+rty undoes the multiplication by -r\Delta y^{2}+rty.
d=\frac{ty\Delta -t^{2}+1}{y\left(t-y\Delta \right)}
Divide r\left(1+\Delta yt-t^{2}\right) by -r\Delta y^{2}+rty.