r ( - \Delta y + t ) ( t + d y ) = + r
Solve for d
\left\{\begin{matrix}d=-\frac{-ty\Delta +t^{2}-1}{y\left(t-y\Delta \right)}\text{, }&y\neq 0\text{ and }\Delta \neq \frac{t}{y}\text{ and }t\neq y\Delta \\d\in \mathrm{R}\text{, }&\left(y=0\text{ and }|t|=1\right)\text{ or }r=0\end{matrix}\right.
Share
Copied to clipboard
\left(r\left(-\Delta \right)y+rt\right)\left(t+dy\right)=r
Use the distributive property to multiply r by \left(-\Delta \right)y+t.
r\left(-\Delta \right)yt+r\left(-\Delta \right)dy^{2}+rt^{2}+rtdy=r
Use the distributive property to multiply r\left(-\Delta \right)y+rt by t+dy.
r\left(-\Delta \right)dy^{2}+rt^{2}+rtdy=r-r\left(-\Delta \right)yt
Subtract r\left(-\Delta \right)yt from both sides.
r\left(-\Delta \right)dy^{2}+rtdy=r-r\left(-\Delta \right)yt-rt^{2}
Subtract rt^{2} from both sides.
r\left(-1\right)\Delta dy^{2}+rtdy=r+r\Delta yt-rt^{2}
Multiply -1 and -1 to get 1.
\left(r\left(-1\right)\Delta y^{2}+rty\right)d=r+r\Delta yt-rt^{2}
Combine all terms containing d.
\left(rty-r\Delta y^{2}\right)d=rty\Delta -rt^{2}+r
The equation is in standard form.
\frac{\left(rty-r\Delta y^{2}\right)d}{rty-r\Delta y^{2}}=\frac{r\left(ty\Delta -t^{2}+1\right)}{rty-r\Delta y^{2}}
Divide both sides by -r\Delta y^{2}+rty.
d=\frac{r\left(ty\Delta -t^{2}+1\right)}{rty-r\Delta y^{2}}
Dividing by -r\Delta y^{2}+rty undoes the multiplication by -r\Delta y^{2}+rty.
d=\frac{ty\Delta -t^{2}+1}{y\left(t-y\Delta \right)}
Divide r\left(1+\Delta yt-t^{2}\right) by -r\Delta y^{2}+rty.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}