Solve for r
r=\frac{-\sqrt{11}i-2}{3}\approx -0.666666667-1.105541597i
r=\frac{-2+\sqrt{11}i}{3}\approx -0.666666667+1.105541597i
Share
Copied to clipboard
r^{2}-4r^{2}=4r+5
Subtract 4r^{2} from both sides.
-3r^{2}=4r+5
Combine r^{2} and -4r^{2} to get -3r^{2}.
-3r^{2}-4r=5
Subtract 4r from both sides.
-3r^{2}-4r-5=0
Subtract 5 from both sides.
r=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\left(-5\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -4 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\left(-5\right)}}{2\left(-3\right)}
Square -4.
r=\frac{-\left(-4\right)±\sqrt{16+12\left(-5\right)}}{2\left(-3\right)}
Multiply -4 times -3.
r=\frac{-\left(-4\right)±\sqrt{16-60}}{2\left(-3\right)}
Multiply 12 times -5.
r=\frac{-\left(-4\right)±\sqrt{-44}}{2\left(-3\right)}
Add 16 to -60.
r=\frac{-\left(-4\right)±2\sqrt{11}i}{2\left(-3\right)}
Take the square root of -44.
r=\frac{4±2\sqrt{11}i}{2\left(-3\right)}
The opposite of -4 is 4.
r=\frac{4±2\sqrt{11}i}{-6}
Multiply 2 times -3.
r=\frac{4+2\sqrt{11}i}{-6}
Now solve the equation r=\frac{4±2\sqrt{11}i}{-6} when ± is plus. Add 4 to 2i\sqrt{11}.
r=\frac{-\sqrt{11}i-2}{3}
Divide 4+2i\sqrt{11} by -6.
r=\frac{-2\sqrt{11}i+4}{-6}
Now solve the equation r=\frac{4±2\sqrt{11}i}{-6} when ± is minus. Subtract 2i\sqrt{11} from 4.
r=\frac{-2+\sqrt{11}i}{3}
Divide 4-2i\sqrt{11} by -6.
r=\frac{-\sqrt{11}i-2}{3} r=\frac{-2+\sqrt{11}i}{3}
The equation is now solved.
r^{2}-4r^{2}=4r+5
Subtract 4r^{2} from both sides.
-3r^{2}=4r+5
Combine r^{2} and -4r^{2} to get -3r^{2}.
-3r^{2}-4r=5
Subtract 4r from both sides.
\frac{-3r^{2}-4r}{-3}=\frac{5}{-3}
Divide both sides by -3.
r^{2}+\left(-\frac{4}{-3}\right)r=\frac{5}{-3}
Dividing by -3 undoes the multiplication by -3.
r^{2}+\frac{4}{3}r=\frac{5}{-3}
Divide -4 by -3.
r^{2}+\frac{4}{3}r=-\frac{5}{3}
Divide 5 by -3.
r^{2}+\frac{4}{3}r+\left(\frac{2}{3}\right)^{2}=-\frac{5}{3}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+\frac{4}{3}r+\frac{4}{9}=-\frac{5}{3}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
r^{2}+\frac{4}{3}r+\frac{4}{9}=-\frac{11}{9}
Add -\frac{5}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(r+\frac{2}{3}\right)^{2}=-\frac{11}{9}
Factor r^{2}+\frac{4}{3}r+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{2}{3}\right)^{2}}=\sqrt{-\frac{11}{9}}
Take the square root of both sides of the equation.
r+\frac{2}{3}=\frac{\sqrt{11}i}{3} r+\frac{2}{3}=-\frac{\sqrt{11}i}{3}
Simplify.
r=\frac{-2+\sqrt{11}i}{3} r=\frac{-\sqrt{11}i-2}{3}
Subtract \frac{2}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}