Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r^{2}=0.343396
Calculate 0.586 to the power of 2 and get 0.343396.
r^{2}-0.343396=0
Subtract 0.343396 from both sides.
\left(r-\frac{293}{500}\right)\left(r+\frac{293}{500}\right)=0
Consider r^{2}-0.343396. Rewrite r^{2}-0.343396 as r^{2}-\left(\frac{293}{500}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
r=\frac{293}{500} r=-0.586
To find equation solutions, solve r-\frac{293}{500}=0 and r+\frac{293}{500}=0.
r^{2}=0.343396
Calculate 0.586 to the power of 2 and get 0.343396.
r=\frac{293}{500} r=-\frac{293}{500}
Take the square root of both sides of the equation.
r^{2}=0.343396
Calculate 0.586 to the power of 2 and get 0.343396.
r^{2}-0.343396=0
Subtract 0.343396 from both sides.
r=\frac{0±\sqrt{0^{2}-4\left(-0.343396\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -0.343396 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-0.343396\right)}}{2}
Square 0.
r=\frac{0±\sqrt{1.373584}}{2}
Multiply -4 times -0.343396.
r=\frac{0±\frac{293}{250}}{2}
Take the square root of 1.373584.
r=\frac{293}{500}
Now solve the equation r=\frac{0±\frac{293}{250}}{2} when ± is plus.
r=-\frac{293}{500}
Now solve the equation r=\frac{0±\frac{293}{250}}{2} when ± is minus.
r=\frac{293}{500} r=-\frac{293}{500}
The equation is now solved.