Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r^{2}=\frac{9\times 10^{-2}\times 0.4\times 0.8\times 10^{-6}}{0.2}
To multiply powers of the same base, add their exponents. Add 4 and -6 to get -2.
r^{2}=\frac{9\times 10^{-8}\times 0.4\times 0.8}{0.2}
To multiply powers of the same base, add their exponents. Add -2 and -6 to get -8.
r^{2}=\frac{9\times \frac{1}{100000000}\times 0.4\times 0.8}{0.2}
Calculate 10 to the power of -8 and get \frac{1}{100000000}.
r^{2}=\frac{\frac{9}{100000000}\times 0.4\times 0.8}{0.2}
Multiply 9 and \frac{1}{100000000} to get \frac{9}{100000000}.
r^{2}=\frac{\frac{9}{250000000}\times 0.8}{0.2}
Multiply \frac{9}{100000000} and 0.4 to get \frac{9}{250000000}.
r^{2}=\frac{\frac{9}{312500000}}{0.2}
Multiply \frac{9}{250000000} and 0.8 to get \frac{9}{312500000}.
r^{2}=\frac{9}{312500000\times 0.2}
Express \frac{\frac{9}{312500000}}{0.2} as a single fraction.
r^{2}=\frac{9}{62500000}
Multiply 312500000 and 0.2 to get 62500000.
r=\frac{3\sqrt{10}}{25000} r=-\frac{3\sqrt{10}}{25000}
Take the square root of both sides of the equation.
r^{2}=\frac{9\times 10^{-2}\times 0.4\times 0.8\times 10^{-6}}{0.2}
To multiply powers of the same base, add their exponents. Add 4 and -6 to get -2.
r^{2}=\frac{9\times 10^{-8}\times 0.4\times 0.8}{0.2}
To multiply powers of the same base, add their exponents. Add -2 and -6 to get -8.
r^{2}=\frac{9\times \frac{1}{100000000}\times 0.4\times 0.8}{0.2}
Calculate 10 to the power of -8 and get \frac{1}{100000000}.
r^{2}=\frac{\frac{9}{100000000}\times 0.4\times 0.8}{0.2}
Multiply 9 and \frac{1}{100000000} to get \frac{9}{100000000}.
r^{2}=\frac{\frac{9}{250000000}\times 0.8}{0.2}
Multiply \frac{9}{100000000} and 0.4 to get \frac{9}{250000000}.
r^{2}=\frac{\frac{9}{312500000}}{0.2}
Multiply \frac{9}{250000000} and 0.8 to get \frac{9}{312500000}.
r^{2}=\frac{9}{312500000\times 0.2}
Express \frac{\frac{9}{312500000}}{0.2} as a single fraction.
r^{2}=\frac{9}{62500000}
Multiply 312500000 and 0.2 to get 62500000.
r^{2}-\frac{9}{62500000}=0
Subtract \frac{9}{62500000} from both sides.
r=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{62500000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{9}{62500000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-\frac{9}{62500000}\right)}}{2}
Square 0.
r=\frac{0±\sqrt{\frac{9}{15625000}}}{2}
Multiply -4 times -\frac{9}{62500000}.
r=\frac{0±\frac{3\sqrt{10}}{12500}}{2}
Take the square root of \frac{9}{15625000}.
r=\frac{3\sqrt{10}}{25000}
Now solve the equation r=\frac{0±\frac{3\sqrt{10}}{12500}}{2} when ± is plus.
r=-\frac{3\sqrt{10}}{25000}
Now solve the equation r=\frac{0±\frac{3\sqrt{10}}{12500}}{2} when ± is minus.
r=\frac{3\sqrt{10}}{25000} r=-\frac{3\sqrt{10}}{25000}
The equation is now solved.