Skip to main content
Solve for m
Tick mark Image
Solve for o
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(r)xm=\frac{4+4\cos(x)}{1+\cos(2x)}ox
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by m.
\frac{\mathrm{d}}{\mathrm{d}x}(r)xm=\frac{\left(4+4\cos(x)\right)o}{1+\cos(2x)}x
Express \frac{4+4\cos(x)}{1+\cos(2x)}o as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(r)xm=\frac{\left(4+4\cos(x)\right)ox}{1+\cos(2x)}
Express \frac{\left(4+4\cos(x)\right)o}{1+\cos(2x)}x as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(r)xm=\frac{\left(4o+4\cos(x)o\right)x}{1+\cos(2x)}
Use the distributive property to multiply 4+4\cos(x) by o.
\frac{\mathrm{d}}{\mathrm{d}x}(r)xm=\frac{4ox+4\cos(x)ox}{1+\cos(2x)}
Use the distributive property to multiply 4o+4\cos(x)o by x.
0=\frac{4ox\cos(x)+4ox}{\cos(2x)+1}
The equation is in standard form.
m\in
This is false for any m.