Solve for p
p=\frac{9r+1}{2}
Solve for r
r=\frac{2p-1}{9}
Graph
Share
Copied to clipboard
r=-\frac{-\frac{2}{3}\times 2p-\frac{1}{3}+1}{2\times 3}
Multiply 2 and -\frac{1}{3} to get -\frac{2}{3}.
r=-\frac{-\frac{4}{3}p-\frac{1}{3}+1}{2\times 3}
Multiply -\frac{2}{3} and 2 to get -\frac{4}{3}.
r=-\frac{-\frac{4}{3}p+\frac{2}{3}}{2\times 3}
Add -\frac{1}{3} and 1 to get \frac{2}{3}.
r=-\frac{-\frac{4}{3}p+\frac{2}{3}}{6}
Multiply 2 and 3 to get 6.
r=-\left(-\frac{2}{9}p+\frac{1}{9}\right)
Divide each term of -\frac{4}{3}p+\frac{2}{3} by 6 to get -\frac{2}{9}p+\frac{1}{9}.
r=\frac{2}{9}p-\frac{1}{9}
To find the opposite of -\frac{2}{9}p+\frac{1}{9}, find the opposite of each term.
\frac{2}{9}p-\frac{1}{9}=r
Swap sides so that all variable terms are on the left hand side.
\frac{2}{9}p=r+\frac{1}{9}
Add \frac{1}{9} to both sides.
\frac{\frac{2}{9}p}{\frac{2}{9}}=\frac{r+\frac{1}{9}}{\frac{2}{9}}
Divide both sides of the equation by \frac{2}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
p=\frac{r+\frac{1}{9}}{\frac{2}{9}}
Dividing by \frac{2}{9} undoes the multiplication by \frac{2}{9}.
p=\frac{9r+1}{2}
Divide r+\frac{1}{9} by \frac{2}{9} by multiplying r+\frac{1}{9} by the reciprocal of \frac{2}{9}.
r=-\frac{-\frac{2}{3}\times 2p-\frac{1}{3}+1}{2\times 3}
Multiply 2 and -\frac{1}{3} to get -\frac{2}{3}.
r=-\frac{-\frac{4}{3}p-\frac{1}{3}+1}{2\times 3}
Multiply -\frac{2}{3} and 2 to get -\frac{4}{3}.
r=-\frac{-\frac{4}{3}p+\frac{2}{3}}{2\times 3}
Add -\frac{1}{3} and 1 to get \frac{2}{3}.
r=-\frac{-\frac{4}{3}p+\frac{2}{3}}{6}
Multiply 2 and 3 to get 6.
r=-\left(-\frac{2}{9}p+\frac{1}{9}\right)
Divide each term of -\frac{4}{3}p+\frac{2}{3} by 6 to get -\frac{2}{9}p+\frac{1}{9}.
r=\frac{2}{9}p-\frac{1}{9}
To find the opposite of -\frac{2}{9}p+\frac{1}{9}, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}