Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{5-3m^{2}}{r}\text{, }&m\neq -\frac{\sqrt{15}}{3}\text{ and }m\neq \frac{\sqrt{15}}{3}\text{ and }r\neq 0\\n\neq 0\text{, }&\left(m=\frac{\sqrt{15}}{3}\text{ or }m=-\frac{\sqrt{15}}{3}\right)\text{ and }r=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{5-3m^{2}}{r}\text{, }&r\neq 0\text{ and }|m|\neq \frac{\sqrt{15}}{3}\\n\neq 0\text{, }&r=0\text{ and }|m|=\frac{\sqrt{15}}{3}\end{matrix}\right.
Solve for m (complex solution)
m=-\frac{\sqrt{3\left(nr+5\right)}}{3}
m=\frac{\sqrt{3\left(nr+5\right)}}{3}\text{, }n\neq 0
Solve for m
m=\frac{\sqrt{3\left(nr+5\right)}}{3}
m=-\frac{\sqrt{3\left(nr+5\right)}}{3}\text{, }\left(n>0\text{ or }r\leq -\frac{5}{n}\right)\text{ and }\left(n<0\text{ or }r\geq -\frac{5}{n}\right)\text{ and }n\neq 0
Graph
Share
Copied to clipboard
rn=3m^{2}-5
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
\frac{rn}{r}=\frac{3m^{2}-5}{r}
Divide both sides by r.
n=\frac{3m^{2}-5}{r}
Dividing by r undoes the multiplication by r.
n=\frac{3m^{2}-5}{r}\text{, }n\neq 0
Variable n cannot be equal to 0.
rn=3m^{2}-5
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
\frac{rn}{r}=\frac{3m^{2}-5}{r}
Divide both sides by r.
n=\frac{3m^{2}-5}{r}
Dividing by r undoes the multiplication by r.
n=\frac{3m^{2}-5}{r}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}