Solve for r
\left\{\begin{matrix}r=-\frac{8\left(y-4\right)}{x}\text{, }&x\neq 0\\r\in \mathrm{R}\text{, }&y=4\text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{8\left(y-4\right)}{r}\text{, }&r\neq 0\\x\in \mathrm{R}\text{, }&y=4\text{ and }r=0\end{matrix}\right.
Share
Copied to clipboard
rx+8y-32=0
Multiply both sides of the equation by 2.
rx-32=-8y
Subtract 8y from both sides. Anything subtracted from zero gives its negation.
rx=-8y+32
Add 32 to both sides.
xr=32-8y
The equation is in standard form.
\frac{xr}{x}=\frac{32-8y}{x}
Divide both sides by x.
r=\frac{32-8y}{x}
Dividing by x undoes the multiplication by x.
r=\frac{8\left(4-y\right)}{x}
Divide -8y+32 by x.
rx+8y-32=0
Multiply both sides of the equation by 2.
rx-32=-8y
Subtract 8y from both sides. Anything subtracted from zero gives its negation.
rx=-8y+32
Add 32 to both sides.
rx=32-8y
The equation is in standard form.
\frac{rx}{r}=\frac{32-8y}{r}
Divide both sides by r.
x=\frac{32-8y}{r}
Dividing by r undoes the multiplication by r.
x=\frac{8\left(4-y\right)}{r}
Divide -8y+32 by r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}