Solve for I
I=\frac{\sqrt{3}}{4q}
q\neq 0
Solve for q
q=\frac{\sqrt{3}}{4I}
I\neq 0
Share
Copied to clipboard
qI=\sqrt{\frac{1}{8}+\frac{1}{16}}
Add \frac{1}{16} and \frac{1}{16} to get \frac{1}{8}.
qI=\sqrt{\frac{3}{16}}
Add \frac{1}{8} and \frac{1}{16} to get \frac{3}{16}.
qI=\frac{\sqrt{3}}{\sqrt{16}}
Rewrite the square root of the division \sqrt{\frac{3}{16}} as the division of square roots \frac{\sqrt{3}}{\sqrt{16}}.
qI=\frac{\sqrt{3}}{4}
Calculate the square root of 16 and get 4.
4qI=\sqrt{3}
Multiply both sides of the equation by 4.
\frac{4qI}{4q}=\frac{\sqrt{3}}{4q}
Divide both sides by 4q.
I=\frac{\sqrt{3}}{4q}
Dividing by 4q undoes the multiplication by 4q.
qI=\sqrt{\frac{1}{8}+\frac{1}{16}}
Add \frac{1}{16} and \frac{1}{16} to get \frac{1}{8}.
qI=\sqrt{\frac{3}{16}}
Add \frac{1}{8} and \frac{1}{16} to get \frac{3}{16}.
qI=\frac{\sqrt{3}}{\sqrt{16}}
Rewrite the square root of the division \sqrt{\frac{3}{16}} as the division of square roots \frac{\sqrt{3}}{\sqrt{16}}.
qI=\frac{\sqrt{3}}{4}
Calculate the square root of 16 and get 4.
4qI=\sqrt{3}
Multiply both sides of the equation by 4.
4Iq=\sqrt{3}
The equation is in standard form.
\frac{4Iq}{4I}=\frac{\sqrt{3}}{4I}
Divide both sides by 4I.
q=\frac{\sqrt{3}}{4I}
Dividing by 4I undoes the multiplication by 4I.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}