Solve for q
q=2r+3s
Solve for r
r=\frac{q-3s}{2}
Share
Copied to clipboard
q-3s=r+r
Add r to both sides.
q-3s=2r
Combine r and r to get 2r.
q=2r+3s
Add 3s to both sides.
q-r-3s-r=0
Subtract r from both sides.
q-2r-3s=0
Combine -r and -r to get -2r.
-2r-3s=-q
Subtract q from both sides. Anything subtracted from zero gives its negation.
-2r=-q+3s
Add 3s to both sides.
-2r=3s-q
The equation is in standard form.
\frac{-2r}{-2}=\frac{3s-q}{-2}
Divide both sides by -2.
r=\frac{3s-q}{-2}
Dividing by -2 undoes the multiplication by -2.
r=\frac{q-3s}{2}
Divide -q+3s by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}