Solve for q
q=18
q=0
Share
Copied to clipboard
q^{2}-36q+540-3q^{2}=-72q+540
Subtract 3q^{2} from both sides.
-2q^{2}-36q+540=-72q+540
Combine q^{2} and -3q^{2} to get -2q^{2}.
-2q^{2}-36q+540+72q=540
Add 72q to both sides.
-2q^{2}+36q+540=540
Combine -36q and 72q to get 36q.
-2q^{2}+36q+540-540=0
Subtract 540 from both sides.
-2q^{2}+36q=0
Subtract 540 from 540 to get 0.
q\left(-2q+36\right)=0
Factor out q.
q=0 q=18
To find equation solutions, solve q=0 and -2q+36=0.
q^{2}-36q+540-3q^{2}=-72q+540
Subtract 3q^{2} from both sides.
-2q^{2}-36q+540=-72q+540
Combine q^{2} and -3q^{2} to get -2q^{2}.
-2q^{2}-36q+540+72q=540
Add 72q to both sides.
-2q^{2}+36q+540=540
Combine -36q and 72q to get 36q.
-2q^{2}+36q+540-540=0
Subtract 540 from both sides.
-2q^{2}+36q=0
Subtract 540 from 540 to get 0.
q=\frac{-36±\sqrt{36^{2}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 36 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-36±36}{2\left(-2\right)}
Take the square root of 36^{2}.
q=\frac{-36±36}{-4}
Multiply 2 times -2.
q=\frac{0}{-4}
Now solve the equation q=\frac{-36±36}{-4} when ± is plus. Add -36 to 36.
q=0
Divide 0 by -4.
q=-\frac{72}{-4}
Now solve the equation q=\frac{-36±36}{-4} when ± is minus. Subtract 36 from -36.
q=18
Divide -72 by -4.
q=0 q=18
The equation is now solved.
q^{2}-36q+540-3q^{2}=-72q+540
Subtract 3q^{2} from both sides.
-2q^{2}-36q+540=-72q+540
Combine q^{2} and -3q^{2} to get -2q^{2}.
-2q^{2}-36q+540+72q=540
Add 72q to both sides.
-2q^{2}+36q+540=540
Combine -36q and 72q to get 36q.
-2q^{2}+36q=540-540
Subtract 540 from both sides.
-2q^{2}+36q=0
Subtract 540 from 540 to get 0.
\frac{-2q^{2}+36q}{-2}=\frac{0}{-2}
Divide both sides by -2.
q^{2}+\frac{36}{-2}q=\frac{0}{-2}
Dividing by -2 undoes the multiplication by -2.
q^{2}-18q=\frac{0}{-2}
Divide 36 by -2.
q^{2}-18q=0
Divide 0 by -2.
q^{2}-18q+\left(-9\right)^{2}=\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}-18q+81=81
Square -9.
\left(q-9\right)^{2}=81
Factor q^{2}-18q+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-9\right)^{2}}=\sqrt{81}
Take the square root of both sides of the equation.
q-9=9 q-9=-9
Simplify.
q=18 q=0
Add 9 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}