Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

q^{2}-q=1
Subtract q from both sides.
q^{2}-q-1=0
Subtract 1 from both sides.
q=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
Multiply -4 times -1.
q=\frac{-\left(-1\right)±\sqrt{5}}{2}
Add 1 to 4.
q=\frac{1±\sqrt{5}}{2}
The opposite of -1 is 1.
q=\frac{\sqrt{5}+1}{2}
Now solve the equation q=\frac{1±\sqrt{5}}{2} when ± is plus. Add 1 to \sqrt{5}.
q=\frac{1-\sqrt{5}}{2}
Now solve the equation q=\frac{1±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from 1.
q=\frac{\sqrt{5}+1}{2} q=\frac{1-\sqrt{5}}{2}
The equation is now solved.
q^{2}-q=1
Subtract q from both sides.
q^{2}-q+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}-q+\frac{1}{4}=1+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
q^{2}-q+\frac{1}{4}=\frac{5}{4}
Add 1 to \frac{1}{4}.
\left(q-\frac{1}{2}\right)^{2}=\frac{5}{4}
Factor q^{2}-q+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
q-\frac{1}{2}=\frac{\sqrt{5}}{2} q-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Simplify.
q=\frac{\sqrt{5}+1}{2} q=\frac{1-\sqrt{5}}{2}
Add \frac{1}{2} to both sides of the equation.