Solve for q (complex solution)
\left\{\begin{matrix}q=\frac{6\left(x+2\right)}{y}\text{, }&y\neq 0\\q\in \mathrm{C}\text{, }&x=-2\text{ and }y=0\end{matrix}\right.
Solve for q
\left\{\begin{matrix}q=\frac{6\left(x+2\right)}{y}\text{, }&y\neq 0\\q\in \mathrm{R}\text{, }&x=-2\text{ and }y=0\end{matrix}\right.
Solve for j (complex solution)
j\in \mathrm{C}
x=\frac{qy}{6}-2
Solve for j
j\in \mathrm{R}
x=\frac{qy}{6}-2
Graph
Share
Copied to clipboard
qy-6x-12=0je
Multiply both sides of the equation by 2.
qy-6x-12=0
Anything times zero gives zero.
qy-12=6x
Add 6x to both sides. Anything plus zero gives itself.
qy=6x+12
Add 12 to both sides.
yq=6x+12
The equation is in standard form.
\frac{yq}{y}=\frac{6x+12}{y}
Divide both sides by y.
q=\frac{6x+12}{y}
Dividing by y undoes the multiplication by y.
q=\frac{6\left(x+2\right)}{y}
Divide 12+6x by y.
qy-6x-12=0je
Multiply both sides of the equation by 2.
qy-6x-12=0
Anything times zero gives zero.
qy-12=6x
Add 6x to both sides. Anything plus zero gives itself.
qy=6x+12
Add 12 to both sides.
yq=6x+12
The equation is in standard form.
\frac{yq}{y}=\frac{6x+12}{y}
Divide both sides by y.
q=\frac{6x+12}{y}
Dividing by y undoes the multiplication by y.
q=\frac{6\left(x+2\right)}{y}
Divide 12+6x by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}