Solve for p
p=-\frac{2\left(5-2x\right)}{x^{2}-2x-1}
x\neq \sqrt{2}+1\text{ and }x\neq 1-\sqrt{2}
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{2\left(p-2\right)\left(p-1\right)}+p+2}{p}\text{; }x=\frac{-\sqrt{2\left(p-2\right)\left(p-1\right)}+p+2}{p}\text{, }&p\neq 0\\x=\frac{5}{2}\text{, }&p=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{2\left(p-2\right)\left(p-1\right)}+p+2}{p}\text{; }x=\frac{-\sqrt{2\left(p-2\right)\left(p-1\right)}+p+2}{p}\text{, }&p\geq 2\text{ or }\left(p\neq 0\text{ and }p\leq 1\right)\\x=\frac{5}{2}\text{, }&p=0\end{matrix}\right.
Graph
Share
Copied to clipboard
px^{2}-p+10-2px=4x
Subtract 2px from both sides.
px^{2}-p-2px=4x-10
Subtract 10 from both sides.
\left(x^{2}-1-2x\right)p=4x-10
Combine all terms containing p.
\left(x^{2}-2x-1\right)p=4x-10
The equation is in standard form.
\frac{\left(x^{2}-2x-1\right)p}{x^{2}-2x-1}=\frac{4x-10}{x^{2}-2x-1}
Divide both sides by x^{2}-2x-1.
p=\frac{4x-10}{x^{2}-2x-1}
Dividing by x^{2}-2x-1 undoes the multiplication by x^{2}-2x-1.
p=\frac{2\left(2x-5\right)}{x^{2}-2x-1}
Divide 4x-10 by x^{2}-2x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}