Solve for L
\left\{\begin{matrix}L=-\frac{Rj}{\omega \left(Rp_{p}-1\right)}\text{, }&R\neq 0\text{ and }j\neq 0\text{ and }p_{p}\neq \frac{1}{R}\text{ and }\omega \neq 0\\L\neq 0\text{, }&R\neq 0\text{ and }p_{p}=\frac{1}{R}\text{ and }j=0\text{ and }\omega \neq 0\end{matrix}\right.
Solve for R
R=\frac{L\omega }{Lp_{p}\omega +j}
\omega \neq 0\text{ and }L\neq 0\text{ and }j\neq -Lp_{p}\omega \text{ and }p_{p}\neq -\frac{j}{L\omega }
Quiz
Linear Equation
5 problems similar to:
p _ { p } = \frac { 1 } { R } - j \frac { 1 } { \omega * L }
Share
Copied to clipboard
p_{p}LR\omega =L\omega -jR\times 1
Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by LR\omega , the least common multiple of R,\omega L.
p_{p}LR\omega -L\omega =-jR
Subtract L\omega from both sides.
\left(p_{p}R\omega -\omega \right)L=-jR
Combine all terms containing L.
\left(Rp_{p}\omega -\omega \right)L=-Rj
The equation is in standard form.
\frac{\left(Rp_{p}\omega -\omega \right)L}{Rp_{p}\omega -\omega }=-\frac{Rj}{Rp_{p}\omega -\omega }
Divide both sides by Rp_{p}\omega -\omega .
L=-\frac{Rj}{Rp_{p}\omega -\omega }
Dividing by Rp_{p}\omega -\omega undoes the multiplication by Rp_{p}\omega -\omega .
L=-\frac{Rj}{\omega \left(Rp_{p}-1\right)}
Divide -jR by Rp_{p}\omega -\omega .
L=-\frac{Rj}{\omega \left(Rp_{p}-1\right)}\text{, }L\neq 0
Variable L cannot be equal to 0.
p_{p}LR\omega =L\omega -jR\times 1
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by LR\omega , the least common multiple of R,\omega L.
p_{p}LR\omega +jR\times 1=L\omega
Add jR\times 1 to both sides.
LRp_{p}\omega +Rj=L\omega
Reorder the terms.
\left(Lp_{p}\omega +j\right)R=L\omega
Combine all terms containing R.
\frac{\left(Lp_{p}\omega +j\right)R}{Lp_{p}\omega +j}=\frac{L\omega }{Lp_{p}\omega +j}
Divide both sides by p_{p}L\omega +j.
R=\frac{L\omega }{Lp_{p}\omega +j}
Dividing by p_{p}L\omega +j undoes the multiplication by p_{p}L\omega +j.
R=\frac{L\omega }{Lp_{p}\omega +j}\text{, }R\neq 0
Variable R cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}