Skip to main content
Solve for L
Tick mark Image
Solve for R
Tick mark Image

Similar Problems from Web Search

Share

p_{p}LR\omega =L\omega -jR\times 1
Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by LR\omega , the least common multiple of R,\omega L.
p_{p}LR\omega -L\omega =-jR
Subtract L\omega from both sides.
\left(p_{p}R\omega -\omega \right)L=-jR
Combine all terms containing L.
\left(Rp_{p}\omega -\omega \right)L=-Rj
The equation is in standard form.
\frac{\left(Rp_{p}\omega -\omega \right)L}{Rp_{p}\omega -\omega }=-\frac{Rj}{Rp_{p}\omega -\omega }
Divide both sides by Rp_{p}\omega -\omega .
L=-\frac{Rj}{Rp_{p}\omega -\omega }
Dividing by Rp_{p}\omega -\omega undoes the multiplication by Rp_{p}\omega -\omega .
L=-\frac{Rj}{\omega \left(Rp_{p}-1\right)}
Divide -jR by Rp_{p}\omega -\omega .
L=-\frac{Rj}{\omega \left(Rp_{p}-1\right)}\text{, }L\neq 0
Variable L cannot be equal to 0.
p_{p}LR\omega =L\omega -jR\times 1
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by LR\omega , the least common multiple of R,\omega L.
p_{p}LR\omega +jR\times 1=L\omega
Add jR\times 1 to both sides.
LRp_{p}\omega +Rj=L\omega
Reorder the terms.
\left(Lp_{p}\omega +j\right)R=L\omega
Combine all terms containing R.
\frac{\left(Lp_{p}\omega +j\right)R}{Lp_{p}\omega +j}=\frac{L\omega }{Lp_{p}\omega +j}
Divide both sides by p_{p}L\omega +j.
R=\frac{L\omega }{Lp_{p}\omega +j}
Dividing by p_{p}L\omega +j undoes the multiplication by p_{p}L\omega +j.
R=\frac{L\omega }{Lp_{p}\omega +j}\text{, }R\neq 0
Variable R cannot be equal to 0.