Evaluate
-\frac{p_{1}^{2}}{2}+\frac{p}{8}+p_{1}
Expand
-\frac{p_{1}^{2}}{2}+\frac{p}{8}+p_{1}
Share
Copied to clipboard
\frac{p_{1}\left(2-p_{1}\right)}{2}+\frac{p}{2}\times \frac{1}{2}\times \frac{1}{2}
Express p_{1}\times \frac{2-p_{1}}{2} as a single fraction.
\frac{p_{1}\left(2-p_{1}\right)}{2}+\frac{p}{2}\times \frac{1\times 1}{2\times 2}
Multiply \frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{p_{1}\left(2-p_{1}\right)}{2}+\frac{p}{2}\times \frac{1}{4}
Do the multiplications in the fraction \frac{1\times 1}{2\times 2}.
\frac{p_{1}\left(2-p_{1}\right)}{2}+\frac{p}{2\times 4}
Multiply \frac{p}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{4p_{1}\left(2-p_{1}\right)}{2\times 4}+\frac{p}{2\times 4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 2\times 4 is 2\times 4. Multiply \frac{p_{1}\left(2-p_{1}\right)}{2} times \frac{4}{4}.
\frac{4p_{1}\left(2-p_{1}\right)+p}{2\times 4}
Since \frac{4p_{1}\left(2-p_{1}\right)}{2\times 4} and \frac{p}{2\times 4} have the same denominator, add them by adding their numerators.
\frac{8p_{1}-4p_{1}^{2}+p}{2\times 4}
Do the multiplications in 4p_{1}\left(2-p_{1}\right)+p.
\frac{8p_{1}-4p_{1}^{2}+p}{8}
Expand 2\times 4.
\frac{p_{1}\left(2-p_{1}\right)}{2}+\frac{p}{2}\times \frac{1}{2}\times \frac{1}{2}
Express p_{1}\times \frac{2-p_{1}}{2} as a single fraction.
\frac{p_{1}\left(2-p_{1}\right)}{2}+\frac{p}{2}\times \frac{1\times 1}{2\times 2}
Multiply \frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{p_{1}\left(2-p_{1}\right)}{2}+\frac{p}{2}\times \frac{1}{4}
Do the multiplications in the fraction \frac{1\times 1}{2\times 2}.
\frac{p_{1}\left(2-p_{1}\right)}{2}+\frac{p}{2\times 4}
Multiply \frac{p}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{4p_{1}\left(2-p_{1}\right)}{2\times 4}+\frac{p}{2\times 4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 2\times 4 is 2\times 4. Multiply \frac{p_{1}\left(2-p_{1}\right)}{2} times \frac{4}{4}.
\frac{4p_{1}\left(2-p_{1}\right)+p}{2\times 4}
Since \frac{4p_{1}\left(2-p_{1}\right)}{2\times 4} and \frac{p}{2\times 4} have the same denominator, add them by adding their numerators.
\frac{8p_{1}-4p_{1}^{2}+p}{2\times 4}
Do the multiplications in 4p_{1}\left(2-p_{1}\right)+p.
\frac{8p_{1}-4p_{1}^{2}+p}{8}
Expand 2\times 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}