Solve for p
p=\frac{q}{1-q^{3}}
q\neq 1
Share
Copied to clipboard
p-q=pq^{2}q
Multiply q and q to get q^{2}.
p-q=pq^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
p-q-pq^{3}=0
Subtract pq^{3} from both sides.
p-pq^{3}=q
Add q to both sides. Anything plus zero gives itself.
\left(1-q^{3}\right)p=q
Combine all terms containing p.
\frac{\left(1-q^{3}\right)p}{1-q^{3}}=\frac{q}{1-q^{3}}
Divide both sides by 1-q^{3}.
p=\frac{q}{1-q^{3}}
Dividing by 1-q^{3} undoes the multiplication by 1-q^{3}.
p=\frac{q}{\left(1-q\right)\left(q^{2}+q+1\right)}
Divide q by 1-q^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}